Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
基本信息
- 批准号:10801834
- 负责人:
- 金额:$ 1.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-17 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintActinsAerobic ExerciseAffectAgeAnatomyApplications GrantsAreaAtherosclerosisBiochemicalBiocompatible MaterialsBiological AvailabilityBiomechanicsBlood VesselsBlood flowCardiovascular DiseasesCardiovascular systemCarotid ArteriesCell LineCellsCharacteristicsClinicalClinical MarkersCollagenComputer ModelsCultured CellsDataDigital Imaging and Communications in MedicineDown-RegulationElasticityEndothelial CellsEndothelin-1EndotheliumEpigenetic ProcessEpoprostenolExerciseFutureGene ExpressionGenesGeneticGenetic TranscriptionGlycocalyxHealth ProfessionalHomeostasisHumanHypertensionImageImmunohistochemistryIn VitroInflammatoryIntercellular adhesion molecule 1LaboratoriesLengthMagnetic Resonance ImagingMechanicsMedicineMessenger RNAModelingMolecularNitric OxideNursesObesityOxidative StressPathway interactionsPatientsPatternPhysiologicalPolymerase Chain ReactionPrintingProcessPropertyProteinsRehabilitation therapyReportingResearchRestReverse TranscriptionShapesStressStress FibersStrokeStructural ProteinSurfaceTechnologyTestingTunica IntimaVascular Cell Adhesion Molecule-1Western Blottingalpha Actininbioprintingcardiovascular healthcardiovascular risk factorcerebrovascularendothelial dysfunctionexercise intensityexercise physiologistexercise programexperimental studyhemodynamicsheparin proteoglycanhuman modelhypercholesterolemiaimaging studyimprovedin vivomechanotransductionpersonalized medicinephysical therapistprogramsprotective factorsprotein expressionreceptorshear stressstandard carestressorstroke survivorthree-dimensional modelingtranscription factortranslational approachtransmission process
项目摘要
Summary
Approximately nine out of 10 cerebrovascular attacks are due to atherosclerosis. Additionally, endothelial
dysfunction is currently accepted as the first pathophysiological step toward atherosclerosis. Endothelial cell
homeostasis and gene expression is highly regulated via shear stress, which is directly associated with blood
flow changes. Aerobic exercise (AX) has been associated with improved cardiovascular (CV) health. However,
only ~50% of the beneficial effects of AX are explained via improvements on traditional CV risk factors (e.g.,
hypertension, hypercholesterolemia, obesity). The remainder ~50% of the beneficial effects of AX are
unknown. Moreover, traditionally controlled AX does not provide personalized medicine, which could account
for a high number of non-responders. Therefore, the main purpose of this proposal is to develop a 3D
synthetic model of the human carotid artery using 3D bio-printing technology to simulate in vivo
personalized AX-induced blood flow patterns and endothelial shear stress and to determine gene
expression/transcription and molecular changes in endothelial cultured cells in vitro. Based on previous
reports and our preliminary data we hypothesize that a 3D synthetic model of the carotid artery will respond to
exercise-induced blood flow patterns as a normal carotid artery. In addition, we hypothesize that endothelial
cultured cells under similar blood flow patterns and shear stress will increase the expression of
atherosclerosis-protective mRNA/proteins (e.g., eNOS, PGI2, and SOD) and structural mRNA/proteins (e.g.,
actin, heparin sulfate proteoglycan [glycocalyx], and α-actinin-bundled stress fibers), and a decrease of pro-
atherosclerosis and pro-inflammatory mRNA/protein expression (e.g., ICAM-1, VCAM-1, and ET-1) in a similar
intensity-dependent manner. First, we will determine biomechanical properties (e.g., vessel distensibility and
compliance) of the carotid artery in vivo during resting conditions and at 3 AX intensities in healthy, young
subjects, patients with stroke, and age-matched controls. Then, subjects will undergo a magnetic resonance
imaging (MRI) study to determine the exact shape (e.g., length and contour) of same tested carotid artery and
the images will be used to build a 3D synthetic model via 3D bio-printing. The 3D synthetic model will mimic
more anatomical and hemodynamic conditions, which will allow for more physiological in vitro experiments.
Secondly, we will perform several flow patterns in endothelial cultured cells seeded on the 3D synthetic model.
Flow patterns will be similar to those patterns observed during in vivo studies. After applying the different flow
patterns, cells will be collected and processed to determine changes in specific gene transcription factors and
protein expression. By characterizing blood flow patterns during different intensities of AX and determining the
gene expression/transcription and molecular changes in endothelial cells under these same blood flow
patterns, using a ‘reverse’ translation approach, we will explain the mechanisms of the cardiovascular
protective factors associated with AX as personalized medicine, especially in stroke survivors.
概括
在10个脑血管攻击中,大约有9个是由于动脉粥样硬化引起的。另外,内皮
功能障碍目前被认为是迈向动脉粥样硬化的第一个病理生理步骤。内皮细胞
稳态和基因表达通过剪切应力高度调节,这与血液直接相关
流动变化。有氧运动(AX)与改善心血管(CV)健康有关。然而,
通过改进传统的简历风险因素(例如,
高血压,高胆固醇血症,肥胖)。其余约50%的斧头有益作用是
未知。此外,传统上控制的斧头不提供个性化药物,这可以说明
对于大量的非反应者。因此,该提议的主要目的是开发3D
使用3D生物打印技术模拟体内的人颈动脉的合成模型
个性化的轴诱导的血流模式和内皮剪切应力并确定基因
体外内皮培养细胞的表达/转录和分子变化。基于以前的
报告和我们的初步数据我们假设,颈动脉的3D合成模型将响应
运动诱导的血流模式是正常的颈动脉。此外,我们假设该内皮
在相似的血流模式下培养的细胞和剪切应力将增加
动脉粥样硬化保护mRNA/蛋白质(例如eNOS,PGI2和SOD)和结构mRNA/蛋白质(例如,
肌动蛋白,硫酸肝素蛋白聚糖[糖椰子蛋白]和α-肌动蛋白捆扎应激纤维),促蛋白酶
在类似的
强度依赖性方式。首先,我们将确定生物力学特性(例如,船舶的不可置信和
颈动脉在静止条件下的颈动脉的依从性)在健康,年轻的3轴强度下
受试者,中风患者和年龄匹配的对照。然后,受试者将经历磁共振
成像(MRI)研究,以确定相同测试的颈动脉的确切形状(例如,长度和轮廓)和
这些图像将用于通过3D Bio印刷构建3D合成模型。 3D合成模型将模仿
更多的解剖学和血液动力学条件,这将允许更多的物理体外实验。
其次,我们将在3D合成模型上种子的内皮培养细胞中执行几种流动模式。
流动模式将与体内研究期间观察到的那些模式相似。应用不同的流程后
将收集和处理模式,细胞,以确定特定基因转录因子的变化和
蛋白表达。通过表征斧头不同强度的血流模式并确定
在这些相同的血流下,内皮细胞中基因表达/转录和分子变化
模式,使用“反向”翻译方法,我们将解释心血管的机制
与斧头作为个性化医学相关的保护因素,尤其是中风存活中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alvaro N Gurovich其他文献
Alvaro N Gurovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alvaro N Gurovich', 18)}}的其他基金
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10606026 - 财政年份:2022
- 资助金额:
$ 1.11万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10599213 - 财政年份:2021
- 资助金额:
$ 1.11万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10818676 - 财政年份:2021
- 资助金额:
$ 1.11万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10406351 - 财政年份:2021
- 资助金额:
$ 1.11万 - 项目类别:
相似国自然基金
面向3D打印平行机的精确调度算法与动态调整机制研究
- 批准号:72301196
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
适于3D打印的肌球蛋白微凝胶Pickering乳液富脂鱼糜的稳定机制
- 批准号:32360595
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
- 批准号:82303979
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
- 批准号:32371472
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印功能化仿生神经纤维修复脊髓损伤的作用及机制研究
- 批准号:82301560
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Dose Flexible Combination 3D-Printed Delivery Systems for Antiviral Therapy in Children
用于儿童抗病毒治疗的剂量灵活组合 3D 打印输送系统
- 批准号:
10682185 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
The role of distal aqueous humor outflow tissue in glucocorticoid-induced glaucoma
远端房水流出组织在糖皮质激素诱发青光眼中的作用
- 批准号:
10667863 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Multi-tissue type condensations for trachea tissue regeneration via individual cell bioprinting
通过单细胞生物打印进行气管组织再生的多组织类型浓缩
- 批准号:
10643041 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Low-Cost, Single-Use Trans-Nasal Cryotherapy Device for Low-Resource Settings
适用于资源匮乏环境的低成本、一次性经鼻冷冻治疗设备
- 批准号:
10761295 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别: