Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
基本信息
- 批准号:10801834
- 负责人:
- 金额:$ 1.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-17 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintActinsAerobic ExerciseAffectAgeAnatomyApplications GrantsAreaAtherosclerosisBiochemicalBiocompatible MaterialsBiological AvailabilityBiomechanicsBlood VesselsBlood flowCardiovascular DiseasesCardiovascular systemCarotid ArteriesCell LineCellsCharacteristicsClinicalClinical MarkersCollagenComputer ModelsCultured CellsDataDigital Imaging and Communications in MedicineDown-RegulationElasticityEndothelial CellsEndothelin-1EndotheliumEpigenetic ProcessEpoprostenolExerciseFutureGene ExpressionGenesGeneticGenetic TranscriptionGlycocalyxHealth ProfessionalHomeostasisHumanHypertensionImageImmunohistochemistryIn VitroInflammatoryIntercellular adhesion molecule 1LaboratoriesLengthMagnetic Resonance ImagingMechanicsMedicineMessenger RNAModelingMolecularNitric OxideNursesObesityOxidative StressPathway interactionsPatientsPatternPhysiologicalPolymerase Chain ReactionPrintingProcessPropertyProteinsRehabilitation therapyReportingResearchRestReverse TranscriptionShapesStressStress FibersStrokeStructural ProteinSurfaceTechnologyTestingTunica IntimaVascular Cell Adhesion Molecule-1Western Blottingalpha Actininbioprintingcardiovascular healthcardiovascular risk factorcerebrovascularendothelial dysfunctionexercise intensityexercise physiologistexercise programexperimental studyhemodynamicsheparin proteoglycanhuman modelhypercholesterolemiaimaging studyimprovedin vivomechanotransductionpersonalized medicinephysical therapistprogramsprotective factorsprotein expressionreceptorshear stressstandard carestressorstroke survivorthree-dimensional modelingtranscription factortranslational approachtransmission process
项目摘要
Summary
Approximately nine out of 10 cerebrovascular attacks are due to atherosclerosis. Additionally, endothelial
dysfunction is currently accepted as the first pathophysiological step toward atherosclerosis. Endothelial cell
homeostasis and gene expression is highly regulated via shear stress, which is directly associated with blood
flow changes. Aerobic exercise (AX) has been associated with improved cardiovascular (CV) health. However,
only ~50% of the beneficial effects of AX are explained via improvements on traditional CV risk factors (e.g.,
hypertension, hypercholesterolemia, obesity). The remainder ~50% of the beneficial effects of AX are
unknown. Moreover, traditionally controlled AX does not provide personalized medicine, which could account
for a high number of non-responders. Therefore, the main purpose of this proposal is to develop a 3D
synthetic model of the human carotid artery using 3D bio-printing technology to simulate in vivo
personalized AX-induced blood flow patterns and endothelial shear stress and to determine gene
expression/transcription and molecular changes in endothelial cultured cells in vitro. Based on previous
reports and our preliminary data we hypothesize that a 3D synthetic model of the carotid artery will respond to
exercise-induced blood flow patterns as a normal carotid artery. In addition, we hypothesize that endothelial
cultured cells under similar blood flow patterns and shear stress will increase the expression of
atherosclerosis-protective mRNA/proteins (e.g., eNOS, PGI2, and SOD) and structural mRNA/proteins (e.g.,
actin, heparin sulfate proteoglycan [glycocalyx], and α-actinin-bundled stress fibers), and a decrease of pro-
atherosclerosis and pro-inflammatory mRNA/protein expression (e.g., ICAM-1, VCAM-1, and ET-1) in a similar
intensity-dependent manner. First, we will determine biomechanical properties (e.g., vessel distensibility and
compliance) of the carotid artery in vivo during resting conditions and at 3 AX intensities in healthy, young
subjects, patients with stroke, and age-matched controls. Then, subjects will undergo a magnetic resonance
imaging (MRI) study to determine the exact shape (e.g., length and contour) of same tested carotid artery and
the images will be used to build a 3D synthetic model via 3D bio-printing. The 3D synthetic model will mimic
more anatomical and hemodynamic conditions, which will allow for more physiological in vitro experiments.
Secondly, we will perform several flow patterns in endothelial cultured cells seeded on the 3D synthetic model.
Flow patterns will be similar to those patterns observed during in vivo studies. After applying the different flow
patterns, cells will be collected and processed to determine changes in specific gene transcription factors and
protein expression. By characterizing blood flow patterns during different intensities of AX and determining the
gene expression/transcription and molecular changes in endothelial cells under these same blood flow
patterns, using a ‘reverse’ translation approach, we will explain the mechanisms of the cardiovascular
protective factors associated with AX as personalized medicine, especially in stroke survivors.
概括
大约十分之九的脑血管发作是由于动脉粥样硬化引起的。
目前认为功能障碍是动脉粥样硬化的第一个病理生理步骤。
体内平衡和基因表达通过剪切应力受到高度调节,这与血液直接相关
有氧运动 (AX) 与改善心血管 (CV) 健康有关。
只有约 50% 的 AX 有益效果可以通过改善传统的 CV 风险因素(例如,
AX 的其余约 50% 的有益作用是
此外,传统控制的 AX 不提供个性化医疗,这可以说明。
因此,该提案的主要目的是开发 3D 方案。
利用3D生物打印技术模拟活体人体颈动脉合成模型
个性化 AX 诱导的血流模式和内皮剪切应力并确定基因
体外培养的内皮细胞的表达/转录和分子变化 基于之前的研究。
报告和我们的初步数据,我们推测颈动脉的 3D 合成模型将做出反应
此外,我们将运动引起的血流模式视为正常的颈动脉。
在相似的血流模式和剪切应力下培养的细胞会增加
动脉粥样硬化保护性 mRNA/蛋白(例如 eNOS、PGI2 和 SOD)和结构 mRNA/蛋白(例如
肌动蛋白、硫酸肝素蛋白聚糖 [糖萼] 和 α-肌动蛋白捆绑的应力纤维),以及亲-
动脉粥样硬化和促炎性 mRNA/蛋白表达(例如 ICAM-1、VCAM-1 和 ET-1)具有相似的作用
首先,我们将确定生物力学特性(例如,血管扩张性和
在健康、年轻的人中,在静息条件下和 3 AX 强度下体内颈动脉的顺应性
然后,受试者将接受磁共振检查。
成像(MRI)研究以确定相同测试颈动脉的确切形状(例如长度和轮廓)和
这些图像将用于通过 3D 生物打印构建 3D 合成模型。 3D 合成模型将进行模仿。
更多的解剖学和血流动力学条件,这将允许进行更多的生理体外实验。
其次,我们将在 3D 合成模型上接种的内皮培养细胞中执行几种流动模式。
流动模式将与应用不同流动后在体内研究中观察到的模式相似。
模式,将收集和处理细胞以确定特定基因转录因子和
通过表征不同 AX 强度期间的血流模式并确定
在相同血流下内皮细胞的基因表达/转录和分子变化
模式,使用“反向”翻译方法,我们将解释心血管的机制
与 AX 作为个性化医疗相关的保护因素,尤其是在中风幸存者中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alvaro N Gurovich其他文献
Alvaro N Gurovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alvaro N Gurovich', 18)}}的其他基金
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10606026 - 财政年份:2022
- 资助金额:
$ 1.11万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10599213 - 财政年份:2021
- 资助金额:
$ 1.11万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10818676 - 财政年份:2021
- 资助金额:
$ 1.11万 - 项目类别:
Synthetic 3D Model of the Carotid Artery to Study Exercise-Induced Changes in Endothelial Gene Expression
用于研究运动引起的内皮基因表达变化的颈动脉合成 3D 模型
- 批准号:
10406351 - 财政年份:2021
- 资助金额:
$ 1.11万 - 项目类别:
相似国自然基金
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
- 批准号:82302684
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Genetics and neurobiology of aggression of Betta splendens
芨芨草攻击行为的遗传学和神经生物学
- 批准号:
10731186 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 1.11万 - 项目类别: