Fibrin-Based Nanoparticles as a Novel Sealant for Vascular Anastomosis
基于纤维蛋白的纳米颗粒作为血管吻合的新型密封剂
基本信息
- 批准号:10806127
- 负责人:
- 金额:$ 3.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAir EmbolismAnastomosis - actionAngiographyBenchmarkingBiocompatible MaterialsBiologicalBiological AssayBlood VesselsCardiovascular DiseasesCardiovascular Surgical ProceduresCarotid ArteriesCellsCellular InfiltrationCharacteristicsClinical SkillsCoagulation ProcessCold ChainsColloidsConsumptionCoronary Artery BypassCryopreservationDrug Delivery SystemsDrug vehicleEndotheliumEvaluationExhibitsFGF2 geneFibrinFibrin Tissue AdhesiveFibrinogenFibroblast Growth FactorFibroblastsFormulationFreeze DryingGelGluesGrowth FactorHemorrhageHemostatic functionHistologicHyperplasiaIn VitroInfiltrationLeadLeftLifeLigationLinkMarketingMechanicsMedicalMicrofluidicsMicroscopyModalityModelingMorphologyNatural DisastersOperative Surgical ProceduresOrgan TransplantationOrgan failureOryctolagus cuniculusOutcomePatientsPharmaceutical PreparationsPhasePhysiciansPhysiologicalPlayPolymersPorosityPostoperative PeriodProceduresProcessPropertyPublic HealthRecoveryResearchResearch TechnicsRiskRoleSafetyScientistShapesSiteSkin wound healingStenosisStimulantStructureSurgical suturesTechniquesTechnologyTemperatureTestingThrombinThrombosisTimeTissue SampleTrainingTransplantationTraumaWarWorkcareercofactordensitydesignflexibilityglobal healthhealinghealth applicationhistological specimensimprovedin vivoinnovationmechanical propertiesnanoparticlenovelnovel therapeuticsparticlepolymerizationpractical applicationpressurerelease factorrepairedrestenosissealantsuccesssurgery outcomewound closurewound healing
项目摘要
PROJECT SUMMARY
Vascular anastomosis is an important surgical technique whereby closely spaced stitches are used to connect blood vessels.
This process is used frequently in organ transplantation, trauma repairs, and cardiovascular surgery. However, vascular
anastomosis is time consuming and associated with serious complications and long recovery times. Use of fibrin glue in
anastomosis has led to improved surgical outcomes and shorter operating times, but these glues are frequently impractical
as their concentrated formulations create high-density gels with short working times, low cellular infiltration, and cold
storage limitations. We have developed fibrin-based nanoparticles (FBNs) which we have used to deliver growth factors
and promote healing in vivo. Unlike traditional fibrin glues, FBNs are pre-polymerized and use physiologically relevant
fibrin/thrombin concentrations. Owing to their colloidal structure and the aforementioned properties, FBNs exhibit tunable
gelation, increased cellular infiltration, room temperature storage, and enhanced drug delivery capabilities – including of
fibroblast growth factor 2 (FGF2), a known stimulant of vascular repair. The objective of this proposal is the optimization,
characterization and in vivo analysis of paintable and patch formulations of an FBN surgical sealant with tunable growth
factor release. It is expected that these FBN sealants will demonstrate better functionality than current fibrin glues, with
the benefit of longer work time, extended stability at room temperature, targeted growth factor delivery, and improved
healing outcomes. Aim 1 will optimize the formulation of patch and flowable FBN glues. This will occur through
characterization of the effects of changes in FBN concentration, thrombin concentration, and cofactor used, on the
mechanics and functionality of the glues. Testing will probe polymerization and degradation dynamics, structure,
mechanical properties, sealant ability, and safety profile. Modalities used will include rheometry, microscopy, mechanical
testing, and novel ex vivo and microfluidic assays. Aim 2 will optimize the loading/release of FGF2 by FBNs and
characterize the effects of FGF2-FBN sealants on vascular wound healing in vitro. FGF2 loading efficiency and release
characteristics of FBN sealants will be determined and compared to high-density bulk fibrin glues. Endothelial and fibroblast
scratch tests and wound closure assays will be used to assess healing outcomes in vitro. Aim 3 will compare FBN
formulations (gel and patch; unloaded and loaded with FGF2) to current fibrin glues using an in vivo leporine model of
carotid artery anastomosis. Angiography will be use to characterize vascular morphology and histology of sampled tissues
will be used to evaluate signs of healing, restenosis, and hyperplasia. This proposal’s use of FBNs will lead to a novel
surgical sealant with improved work time and tunable drug delivery profiles that boasts superior wound healing – allowing
for faster operating times, fewer complications, and improved recovery. This technology will also increase the accessibility
of surgical glues by removing cold-chain requirements, opening up their use in varied global health applications. Training
in the associated research techniques and clinical skills required for this project will contribute to the success of the applicant
during the next phases of her career on the path to becoming an independent physician scientist.
项目概要
血管吻合术是一种重要的外科技术,通过紧密间隔的缝合来连接血管。
该过程经常用于器官移植、创伤修复和心血管手术。
吻合术非常耗时,并且会导致严重的并发症和较长的恢复时间。
吻合术改善了手术效果并缩短了手术时间,但这些胶水通常不切实际
因为其浓缩配方可形成高密度凝胶,工作时间短、细胞渗透低且冷
我们开发了基于纤维蛋白的纳米粒子(FBN),用于传递生长因子。
与传统的纤维蛋白胶不同,FBN 是预聚合的,并且具有生理相关性。
由于其胶体结构和上述特性,FBN 表现出可调节的纤维蛋白/凝血酶浓度。
凝胶化、增加细胞渗透、室温储存和增强的药物输送能力 - 包括
成纤维细胞生长因子 2 (FGF2),一种已知的血管修复刺激物,该提案的目的是优化,
具有可调节生长的 FBN 手术密封剂的可涂漆和贴片配方的表征和体内分析
预计这些 FBN 密封剂将比目前的纤维蛋白胶表现出更好的功能。
具有更长的工作时间、延长室温稳定性、靶向生长因子输送以及改进的优点
目标 1 将优化贴片和可流动 FBN 胶的配方。
表征 FBN 浓度、凝血酶浓度和所用辅因子变化对
测试将探讨胶水的聚合和降解动力学、结构、
机械性能、密封剂能力和安全特性将包括流变测定、显微镜、机械。
测试,以及新颖的离体和微流体测定,目标 2 将优化 FBN 和 FGF2 的加载/释放。
表征 FGF2-FBN 密封剂对体外血管伤口愈合的影响。
FBN 密封剂的特性将被确定并与高密度块状纤维蛋白胶进行比较。
划痕测试和伤口闭合试验将用于评估体外愈合结果,Aim 3 将比较 FBN。
使用体内兔素模型将配方(凝胶和贴片;卸载和装载 FGF2)转化为当前的纤维蛋白胶
颈动脉吻合术将用于表征采样组织的血管形态和组织学。
将用于评估愈合、再狭窄和增生的迹象。该提案对 FBN 的使用将产生一种新颖的效果。
手术密封剂具有改善的工作时间和可调节的药物输送曲线,具有卓越的伤口愈合能力 - 允许
更快的手术时间、更少的并发症和更好的恢复。该技术还将提高可及性。
通过消除冷链要求,开放其在各种全球健康应用中的使用。
该项目所需的相关研究技术和临床技能将有助于申请人的成功
在她职业生涯的下一阶段,她将成为一名独立的医师科学家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nina Alexandra Moiseiwitsch其他文献
Nina Alexandra Moiseiwitsch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nina Alexandra Moiseiwitsch', 18)}}的其他基金
Fibrin-Based Nanoparticles as a Novel Sealant for Vascular Anastomosis
基于纤维蛋白的纳米颗粒作为血管吻合的新型密封剂
- 批准号:
10536988 - 财政年份:2022
- 资助金额:
$ 3.99万 - 项目类别:
相似国自然基金
聚电解质络合作用调控的高初黏性大豆蛋白粘合剂构建及增强机制研究
- 批准号:52303059
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
氮杂环丙烷基聚多硫化物可逆粘合剂的分子设计与制备
- 批准号:22378080
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
仿深共晶溶剂小分子类低温粘合剂的设计制备及粘附机制研究
- 批准号:22308299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载MUR仿生脂质体粘合剂靶向调控荷菌巨噬细胞IFI204/ARMCX3/Caspase-11焦亡抑制创伤性骨髓炎发生的机制研究
- 批准号:82372421
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
多酚功能化壳聚糖基组织粘合剂构建及其能量耗散机制探究
- 批准号:82302389
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 3.99万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 3.99万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bio-Responsive and Immune Protein-Based Therapies for Inhibition of Proteolytic Enzymes in Dental Tissues
用于抑制牙齿组织中蛋白水解酶的基于生物响应和免疫蛋白的疗法
- 批准号:
10555093 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 3.99万 - 项目类别:
Fellowship