Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
基本信息
- 批准号:8817186
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-20 至 2019-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdaptor Signaling ProteinAdhesionsAdhesivesAdultAmino AcidsAnimalsApplications GrantsAxonBehaviorBiochemicalBiochemical GeneticsBiologicalBiological AssayBiological ModelsBrain DiseasesCell AdhesionCell Culture TechniquesCellsComplexCuesCyclic GMP-Dependent Protein KinasesCytoskeletonDevelopmentDidelphidaeDiseaseDrosophila genusElementsEmbryoEmotionsEnzymesEquilibriumEventF-ActinFamilyFamily memberFigs - dietaryFilamentGTP-Binding ProteinsGTPase-Activating ProteinsGoalsGrantGuanosine Triphosphate PhosphohydrolasesHumanImageIntegral Membrane ProteinIntegrinsLearningLengthLesionLinkLocationLogicMaintenanceMammalsMarsupialiaMediatingMental HealthMental disordersMicrofilamentsModelingMolecularMolecular GeneticsMonomeric GTP-Binding ProteinsNatureNervous system structureNeuraxisNeurologicNeuronsOxidation-ReductionOxidoreductaseProblem SolvingProcessProtein FamilyProtein-Serine-Threonine KinasesPsyche structureRecoveryRegulationResearchResolutionScientistSecond Messenger SystemsSemaphorinsShapesSignal PathwaySignal TransductionSolutionsSpecific qualifier valueSpinal CordSurfaceSystemTertiary Protein StructureTestingTherapeuticTimeTo specifyTraumaWalkingWorkactin 2adhesion receptoraxon growthaxon guidanceaxon regenerationcellular imagingextracellularflyfollow-upgenetic regulatory proteingraduate studentin vivoinsightneuronal cell bodynovelplexinpolymerizationpreventprogramspublic health relevancereceptorrelating to nervous systemsecond messengersignal processing
项目摘要
DESCRIPTION (provided by applicant): This proposal focuses on characterizing the molecular mechanisms of axon navigation and connectivity. A normal functioning human nervous system requires the interconnection of billions of neurons. Improper formation or maintenance of these connections leads to neurological abnormalities that result in a number of mental diseases and disorders. How are these connections assembled and integrated? Work over the past twenty years has revealed that the molecular mechanisms of axon guidance and connectivity are well- conserved between simple and complex animals. Simple animals like flies use many of the same guidance signals as mammals. Therefore, as a step towards understanding how complex nervous systems form and properly function, we have pursued a strategy to determine how the simple model fly nervous system is assembled - where we can also apply high-resolution molecular, genetic, biochemical, imaging, and cellular approaches to solving this problem. Indeed, the goal of my research program is to focus on a group of axons within the simple nervous system of the fly embryo and characterize the molecules and mechanisms that guide them to their targets. In particular, elegant studies have now identified a number of the extracellular cues and receptors that guide axons, revealing fundamental mechanisms of how axons form connections. Far less is known, however, of the intracellular signaling pathways and the mechanisms that link these guidance cues and their receptors to the control of axon navigation. As a model, we have been focusing on one of the largest protein families involved in neuronal connectivity, the Semaphorins (Semas). Semas utilize Plexins, large transmembrane proteins found on the axonal surface, as receptors to direct their effects. Yet, how Plexins transduce Sema signals to sculpt connections is still poorly understood. Now, over the past few years, we have had several advances on this front, which have provided new insights into axon guidance and connectivity. We have identified a novel biochemical mechanism (a specific reversible Redox mechanism controlled by Mical and SelR enzymes) that directly regulates the actin cytoskeletal elements necessary for axon guidance and connectivity. We have also uncovered a set of molecular interactors - Sema/Plexins, G proteins, kinases, second messengers, adaptors, and integrin cell adhesion receptors - that directly modulate the ability of an axon to adhere to its substrate. Our observations have led us to hypothesize that axon guidance and connectivity are controlled by both reversible Redox regulation of actin and the modulation of adhesion/de- adhesion. We propose to further test this hypothesis by employing molecular, genetic, biochemical, cell culture, and imaging approaches and the Drosophila model system to follow-up on several lines of preliminary observations that identify 1) new regulatory enzymes that specifically control both the activity and localization of Mical-mediated Redox regulation of actin and 2) new molecular components underlying Sema/Plexin/G- protein-mediated de-adhesion.
描述(由申请人提供):该提案侧重于表征轴突导航和连接的分子机制。正常运作的人类神经系统需要数十亿个神经元的互连。这些连接的形成或维持不当会导致神经系统异常,从而导致许多精神疾病和障碍。这些连接是如何组装和集成的?过去二十年的工作表明,轴突引导和连接的分子机制在简单和复杂的动物之间都得到了很好的保守。像苍蝇这样的简单动物使用许多与哺乳动物相同的引导信号。因此,作为了解复杂神经系统如何形成和正常运作的一步,我们采取了一种策略来确定简单模型果蝇神经系统是如何组装的 - 我们还可以应用高分辨率分子、遗传、生化、成像和细胞方法来解决这个问题。事实上,我的研究计划的目标是关注果蝇胚胎简单神经系统内的一组轴突,并表征引导它们到达目标的分子和机制。特别是,优雅的研究现在已经确定了许多引导轴突的细胞外信号和受体,揭示了轴突如何形成连接的基本机制。然而,人们对细胞内信号传导途径以及将这些引导信号及其受体与轴突导航控制联系起来的机制知之甚少。作为模型,我们一直关注参与神经元连接的最大蛋白质家族之一——信号蛋白 (Semas)。 Semas 利用 Plexins(轴突表面上发现的大型跨膜蛋白)作为受体来指导其作用。然而,Plexins 如何转导 Sema 信号来塑造连接仍知之甚少。现在,在过去的几年里,我们在这方面取得了一些进展,为轴突引导和连接提供了新的见解。我们已经确定了一种新的生化机制(由 Mical 和 SelR 酶控制的特定可逆氧化还原机制),它直接调节轴突引导和连接所需的肌动蛋白细胞骨架元件。我们还发现了一组分子相互作用因子 - Sema/Plexins、G 蛋白、激酶、第二信使、接头和整联蛋白细胞粘附受体 - 直接调节轴突粘附其基质的能力。我们的观察使我们假设轴突引导和连接是由肌动蛋白的可逆氧化还原调节和粘附/脱粘附的调节控制的。我们建议通过采用分子、遗传、生化、细胞培养和成像方法以及果蝇模型系统来进一步检验这一假设,以跟踪几行初步观察结果,这些观察结果确定了 1) 特异性控制活性和活性的新调节酶。 Mical 介导的肌动蛋白氧化还原调节的定位以及 2) Sema/Plexin/G 蛋白介导的去粘附的新分子成分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JONATHAN R TERMAN其他文献
JONATHAN R TERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JONATHAN R TERMAN', 18)}}的其他基金
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
- 批准号:
10008272 - 财政年份:2019
- 资助金额:
$ 39.75万 - 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
- 批准号:
10352310 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
- 批准号:
8423045 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
- 批准号:
8792256 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
- 批准号:
8087940 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
- 批准号:
8608013 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Molecular Mechanisms of Semaphorin/Plexin-mediated Cytoskeletal Reorganization
信号蛋白/丛蛋白介导的细胞骨架重组的分子机制
- 批准号:
8221002 - 财政年份:2011
- 资助金额:
$ 39.75万 - 项目类别:
Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
- 批准号:
8067168 - 财政年份:2009
- 资助金额:
$ 39.75万 - 项目类别:
Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
- 批准号:
10734706 - 财政年份:2009
- 资助金额:
$ 39.75万 - 项目类别:
Molecular mechanisms of axon guidance and neural connectivity
轴突引导和神经连接的分子机制
- 批准号:
8973574 - 财政年份:2009
- 资助金额:
$ 39.75万 - 项目类别:
相似国自然基金
ARRB调控Wnt/β-catenin信号通路诱导血管内皮细胞necroptosis在非小细胞肺癌外渗与转移中的作用及机制研究
- 批准号:81902350
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
内化接头蛋白HIP1R介导神经元树突生长和分支的作用及其机制研究
- 批准号:31871418
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
SH3结构域蛋白Dlish调控果蝇Hippo信号通路的分子机制研究
- 批准号:31801190
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
锚定蛋白ENH调控eNOS磷酸化在血管重构中的作用及机制研究
- 批准号:31871399
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
PKA-LNK-14-3-3信号通路在造血干细胞及其前体细胞中的功能研究
- 批准号:31701236
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondrial positioning regulates redox-signaling during cell migration
线粒体定位调节细胞迁移过程中的氧化还原信号
- 批准号:
10520211 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Integrin activation during neutrophil adhesion and vascular inflammation
中性粒细胞粘附和血管炎症期间的整合素激活
- 批准号:
10822018 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10502136 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Alterations of leukocyte integrin signaling leading to diabetes and autoimmunity
白细胞整合素信号的改变导致糖尿病和自身免疫
- 批准号:
10683384 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别:
Project 1- Role of Kindlins in Blood and Vascular Cell Biology
项目 1 - Kindlins 在血液和血管细胞生物学中的作用
- 批准号:
10471912 - 财政年份:2021
- 资助金额:
$ 39.75万 - 项目类别: