DMS/NIGMS 2: Spatial, Multi-Host Petri Net Models for Zoonotic Disease Forecasting
DMS/NIGMS 2:用于人畜共患疾病预测的空间、多主机 Petri 网络模型
基本信息
- 批准号:10797423
- 负责人:
- 金额:$ 27.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AreaArizonaBiological ModelsBiologyCoccidioidomycosisCommunicationComplexDataData ScienceData SourcesDiseaseDisease OutbreaksDisease ReservoirsDisease modelEcosystemEducation and OutreachEducational workshopEndemic DiseasesEventFutureGeneticHabitatsHantavirusHantavirus Pulmonary SyndromeHealthHumanLinkMediatingModelingMonitorNational Institute of General Medical SciencesOutputPersonsPrevalencePublic HealthResearchResearch PersonnelResourcesRiskRodentRodent ModelSamplingSourceSouthwestern United StatesStable PopulationsStudentsSystemTextbooksTimeVirusVisualVisualizationWild AnimalsZoonosesbehavior influenceburden of illnessdesert fevereffective interventionenvironmental changefield studyfungusimprovedinterdisciplinary approachland uselife historynoveloutbreak controloutreachpathogensimulationsocial influencetooltraittrendundergraduate research experienceweb appzoonotic spillover
项目摘要
Diseases that spillover from wild animals pose an increasing threat to human health worldwide, but
forecasting how zoonotic pathogens spread remains a major challenge. Zoonotic diseases are complex,
spatially and temporally evolving systems whose behaviors are influenced by social, ecological, genetic,
and evolutionary factors. Understanding the contributions of biotic and abiotic factors to accurate disease forecasting is an urgent priority for managing the emerging risks of rapid environmental change and for improving mechanistic models of complex ecological systems. Field studies monitoring zoonotic pathogens and their host species have typically assumed that observing high host prevalence is strong evidence that (i) the host is a ‘reservoir’ of the pathogen, maintaining it at a stable population level; and (ii) the host is a persistent source of spillover into other species. However, ecological models have shown that reservoir status can be strongly context dependent, mediated by extrinsic factors including interactions with other species and habitat fragmentation. An interdisciplinary approach combining complex systems modeling, data science, and risk analysis is therefore needed to model zoonotic spillover dynamics. This project will construct novel largescale, multi-host mechanistic models of the Hantavirus Pulmonary Syndrome (HPS) and Valley Fever (coccidioidomycosis) diseases in the Phoenix, Arizona metro area to investigate the stability versus context-sensitivity of hosts as disease reservoirs and identify key future data sources required to improve forecasting and identify effective interventions aimed at reducing disease burden. Both diseases are endemic to the southwestern United States and are believed to be spread by rodent hosts, but they are caused by different types of pathogens (viruses and fungi, respectively) and show divergent case trends. The project will use Petri Net models, which are modular, scalable, and readily visualized as mechanistic network diagrams, which makes them a valuable tool for exploring how adding or removing hosts and changing land use are expected to change disease dynamics.
For training and outreach, the project will implement and evaluate initiatives to (i) communicate results in public outreach events; (ii) construct a course-based undergraduate research experience (CURE) focused on disease modeling; and (iii) build capacity for researching Valley Fever and mitigating outbreaks. For outreach, the project will create a free web app for public interaction with modular disease models and their visual outputs. In addition to presenting project results for HPS and Valley Fever, the web app will be linked to an interactive textbook introducing Petri Nets to be developed by the project. For the CURE class, students will focus on synthesizing zoonotic disease data to improve risk modeling, providing urgently needed research opportunities for ASU’s approximately 7,000 in-person and online biology majors. Lastly, the project will organize a capacity-building workshop of academic and public health researchers to introduce them to Petri Net resources and to identify data needs for improved forecasting.
野生动物传播的疾病对全世界人类健康构成越来越大的威胁,但是
预测人畜共患病原体如何传播仍然是一个重大挑战。
空间和时间演化的系统,其行为受到社会、生态、遗传、
了解生物和非生物因素对准确疾病预测的贡献是管理快速环境变化的新风险和改进监测人畜共患病原体及其宿主物种的实地研究的当务之急。假设观察到高宿主流行率是有力的证据,表明(i)宿主是病原体的“储存库”,将其维持在稳定的种群水平;(ii)宿主是溢出到其他持久性生态模型的来源。已经表明因此,水库状况可能与环境密切相关,受到外部因素的影响,包括与其他物种的相互作用和栖息地破碎化,因此需要一种结合复杂系统建模、数据科学和风险分析的跨学科方法来模拟人畜共患溢出动态。 ,亚利桑那州凤凰城地区汉坦病毒肺综合征(HPS)和谷热(球孢子菌病)疾病的多宿主机制模型,以研究宿主的稳定性与环境敏感性作为疾病储存库,并确定改进预测和确定旨在减轻疾病负担的有效干预措施所需的关键未来数据源。这两种疾病都是美国西南部的地方病,并被认为是由啮齿动物宿主传播的,但它们是由不同类型的疾病引起的。该项目将使用 Petri Net 模型,该模型是模块化的、可扩展的,并且易于可视化为机械网络图,这使得它们成为探索如何添加或删除主机和病毒的宝贵工具。改变土地使用预计会改变疾病动态。
在培训和推广方面,该项目将实施和评估以下举措:(i) 在公共推广活动中传达结果;(ii) 构建基于课程的本科生研究经验 (CURE),重点关注疾病建模;(iii) 建设研究能力;为了推广谷热和缓解疫情,该项目将创建一个免费的网络应用程序,供公众与模块化疾病模型及其视觉输出进行交互。除了展示 HPS 和谷热的项目结果外,该网络应用程序还将链接到一个交互式应用程序。教科书介绍 Petri Nets在该项目开发的 CURE 课程中,学生将重点关注合成人畜共患疾病数据以改进风险建模,为亚利桑那州立大学约 7,000 名现场和在线生物学专业学生提供急需的研究机会。学术和公共卫生研究人员研讨会,向他们介绍 Petri Net 资源并确定改进预测的数据需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beckett Sterner其他文献
Beckett Sterner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
双亚利桑那沙门氏菌类伤寒毒素组装模式及致病机制研究
- 批准号:32370189
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Understanding and Targeting the Pathophysiology of Youth-onset Type 2 Diabetes
了解并针对青年发病 2 型糖尿病的病理生理学
- 批准号:
10583335 - 财政年份:2023
- 资助金额:
$ 27.34万 - 项目类别:
Arsenic and other co-metals in the San Carlos Apache drinking water
圣卡洛斯阿帕奇饮用水中的砷和其他共金属
- 批准号:
10302159 - 财政年份:2021
- 资助金额:
$ 27.34万 - 项目类别:
Arsenic and other co-metals in the San Carlos Apache drinking water
圣卡洛斯阿帕奇饮用水中的砷和其他共金属
- 批准号:
10480930 - 财政年份:2021
- 资助金额:
$ 27.34万 - 项目类别: