A framework for developing translatable intelligent neural interface systems for precision neuromodulation therapies
开发用于精准神经调节治疗的可翻译智能神经接口系统的框架
基本信息
- 批准号:10689651
- 负责人:
- 金额:$ 38.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAlgorithmsAlzheimer&aposs DiseaseAmygdaloid structureArchitectureArtificial IntelligenceBehaviorBehavioralBiological MarkersBiosensorClinicalCollaborationsCommunitiesComputational algorithmComputer ArchitecturesComputer HardwareComputer softwareCustomDataDementiaDependenceDevicesDiseaseEcosystemEnvironmentGenerationsGoalsHippocampusHumanImplantInfrastructureIntelligenceIntelligence TestsLearningLibrariesLifeLinkMachine LearningMapsMeasurementMeasuresMemoryMemory DisordersMemory impairmentModelingNervous SystemNeurosciencesPatientsPerformancePhysiologicalPhysiological ProcessesPoliciesPower SourcesPrecision therapeuticsPsychological reinforcementRattusResearchRewardsSymptomsSystemTechniquesTechnologyTestingTherapeuticTimeTranslatingTranslationsWorkage relatedbehavioral outcomebiological systemsdesignimplantable deviceimprovedin vivoin vivo evaluationneuralneurophysiologyneuropsychiatric disorderneuroregulationnext generationnovel strategiesopen sourcepredictive modelingprototypeside effecttherapy outcometoolwearable device
项目摘要
Despite advances in neuromodulation technology, therapeutic devices are often ineffective or have adverse
side effects. Next-generation closed-loop neuromodulation systems will provide great potentials for
improving the therapeutic outcome by sensing the neural states and adapting the neuromodulatory actions.
These systems will provide powerful tools for understanding the mechanisms of treatment by elucidating the
causal link between regulating the physiological states and the therapeutic or the behavioral outcomes.
However, a lack of systematic approach to optimally control neurostimulation is a major barrier to fully utilize
their potentials. Furthermore, the real-time implementation of advanced optimization and control algorithms
requires powerful computing hardware that pose a major challenge for translating the effective neural
interface systems into implantable or wearable devices with limited power supply.
The proposed project is addressing these two problems by developing an open-source end-to-end platform,
called NeuroWeaver, to design, test and deploy intelligent Closed-Loop Neuromodulation (iCLON) systems
that automatically can learn the optimal neuromodulation control policies by interacting with the nervous
system. We cast the problem of optimizing neuromodulation into reward-based learning where achieving
the desired neural state or the therapeutic outcome represents a measure of reward for the iCLON system.
We will use techniques from reinforcement learning and model predictive control to develop algorithms that
enable iCLON systems learn the optimal actions to maximize their reward.
Memory dysfunction is one of the most devastating symptoms of Alzheimer’s disease and age-related
dementia. We will develop the NeuroWeaver platform in the context of designing iCLON systems to induce
good memory states in the hippocampus by closed-loop amygdala stimulation. Optimizing the memory-
enhancing effects of amygdala stimulation will have immediate benefits to research on treatments for
memory disorders. More broadly, the NeuroWeaver platform can be combined with a wide range of
biological sensors and actuators to design intelligent closed-loop control systems for regulating
physiological processes far beyond the proposed application in this proposal. Our proposed platform will
have the potential to create an open-source ecosystem for collaboration between machine learning,
neuroscience, and computer architecture communities as well as provide tools for further enrichment of the
algorithms and broader utilization in the biomedical domain.
尽管神经调节技术取得了进步,但治疗设备往往无效或有不良反应
下一代闭环神经调节系统将为治疗提供巨大的潜力。
通过感知神经状态并调整神经调节作用来改善治疗结果。
这些系统将为通过阐明治疗机制来理解治疗机制提供强大的工具。
调节生理状态与治疗或行为结果之间的因果关系。
然而,缺乏最佳控制神经刺激的系统方法是充分利用的主要障碍
此外,先进优化和控制算法的实时实施。
需要强大的计算硬件,这对翻译有效的神经网络提出了重大挑战
将系统连接到电源有限的可植入或可穿戴设备中。
拟议的项目正在通过开发开源端到端平台来解决这两个问题,
称为 NeuroWeaver,用于设计、测试和部署智能闭环神经调节 (iCLON) 系统
它可以通过与神经元相互作用自动学习最佳的神经调节控制策略
我们将优化神经调节的问题转化为基于奖励的学习,从而实现这一目标。
期望的神经状态或治疗结果代表了 iCLON 系统的奖励措施。
我们将使用强化学习和模型预测控制技术来开发算法
使 iCLON 系统能够学习最佳行动,以最大化其回报。
记忆功能障碍是阿尔茨海默病最具破坏性的症状之一,并且与年龄有关
我们将在设计 iCLON 系统的背景下开发 NeuroWeaver 平台来诱导痴呆症。
通过闭环杏仁核刺激优化海马体的记忆状态。
增强杏仁核刺激的效果将对治疗研究产生立竿见影的好处
更广泛地说,NeuroWeaver 平台可以与多种疾病相结合。
生物传感器和执行器设计智能闭环控制系统进行调节
生理过程远远超出了本提案中提出的应用程序。
有潜力为机器学习之间的协作创建一个开源生态系统,
神经科学和计算机体系结构社区,并提供进一步丰富知识的工具
算法和在生物医学领域更广泛的应用。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amygdala Stimulation Leads to Functional Network Connectivity State Transitions in the Hippocampus.
- DOI:10.1109/embc44109.2020.9176742
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Sendi MSE;Kanta V;Inman CS;Manns JR;Hamann S;Gross RE;Willie JT;Mahmoudi B
- 通讯作者:Mahmoudi B
Software-Defined Workflows for Distributed Interoperable Closed-Loop Neuromodulation Control Systems.
- DOI:10.1109/access.2021.3113892
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kathiravelu P;Sarikhani P;Gu P;Mahmoudi B
- 通讯作者:Mahmoudi B
ReLeQ : A Reinforcement Learning Approach for Automatic Deep Quantization of Neural Networks.
- DOI:10.1109/mm.2020.3009475
- 发表时间:2020-09
- 期刊:
- 影响因子:3.6
- 作者:Elthakeb AT;Pilligundla P;Mireshghallah F;Esmaeilzadeh H;Yazdanbakhsh A
- 通讯作者:Yazdanbakhsh A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hadi Esmaeilzadeh其他文献
Hadi Esmaeilzadeh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hadi Esmaeilzadeh', 18)}}的其他基金
A framework for developing translatable intelligent neural interface systems for precision neuromodulation therapies
开发用于精准神经调节治疗的可翻译智能神经接口系统的框架
- 批准号:
10005329 - 财政年份:2019
- 资助金额:
$ 38.83万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
Implementation of an impact assessment tool to optimize responsible stewardship of genomic data in the cloud
实施影响评估工具以优化云中基因组数据的负责任管理
- 批准号:
10721762 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 38.83万 - 项目类别: