Bimodal platform for nondestructive analysis of engineered vascular biomaterials

用于工程血管生物材料无损分析的双模平台

基本信息

项目摘要

 DESCRIPTION (provided by applicant): The objective of this grant application is to research, test and validate a bi-modal diagnostic platform combining optical and ultrasound imaging technologies for real-time, non-destructive in-vitro and in-vivo analysis of composition, structure function and site specific cellular repopulation of extracellular matrix (ECM) scaffolds utilized fr vascular tissue engineering. The proposed approach has the potential to significantly advance the field of vascular tissue engineering and facilitate translation of engineered vascular material to clinical application. The non-destructive nature of the proposed platform enables repeated assessment of ECM scaffold and recellularized construct structure-function relationships both in-vitro and in-vivo. The proposed technology therefore alleviates the need for destructive analysis methods across multiple time points, which are costly, time consuming and frequently impractical. Moreover, the proposed technology will facilitate (a) in-vitro rapid screening of scaffold production methods and non-destructive assessment of batch quality; and (b) non- terminal in-vivo assessment across multiple time points, thereby providing mechanistic insights into engineered vascular tissue regenerative processes. The proposed bi-modal platform will integrate two non-ionizing radiation techniques for label-free tissue analysis: (1) Multispectral Time-Resolved Fluorescence Spectroscopy (TRFS) system for evaluation of ECM composition and biochemical heterogeneities of vascular biomaterials; and (2) High-frequency Ultrasound (US) imaging for evaluation of structural properties and morphology in vascular biomaterials. This is enabled by either Ultrasound Backscatter Microscopy (UBM) for planar scanning or conventional Intravascular Ultrasound (IVUS) for rotational scanning. Four specific aims will be addressed. Aim 1 is focused on developing a set of customized tools (instrumentation and data analysis methods) for in- vitro and in-vivo assessment of vascular scaffolds and constructs. Aim 2 in focused on demonstrating the feasibility of the bi-modal platform as a non-destructive tool for assessment of vascular scaffold properties. Aim 3 is focused on demonstrating the bi-modal platform's ability as a non-destructively tool for in-vitro studying and monitoring of vascular tissue construct formation. Aim 4 is focused on demonstrating the feasibility of the bi-modal technique as a non-destructive tool for monitoring the maturation of vascular constructs in-vivo post- implantation. In summary, the technology proposed for development and validation in this grant application offers a non-destructive solution for the evaluation of many important features (compositional, structural and functional) associated with the maturity and functionality of vascular biomaterials. This is likely to improve our ability to produce engineered vascular tissues in the laboratory for in-vivo implantation which can accelerate the integration time of the implant with the surrounding host tissue, thus restoring the desired quality of life to the patient. Emphasis will be placed on the evaluation of engineered vascular tissue, though, if successful, this non-destructive technique can be applied to assess a variety of engineered tissues.
 描述(由申请人提供):本拨款申请的目的是研究、测试和验证结合光学和超声成像技术的双模诊断平台,用于实时、无损的体外和体内成分分析利用血管组织工程的细胞外基质(ECM)支架的结构功能和位点特异性细胞再增殖所提出的方法有可能显着推进血管组织工程领域并促进工程血管材料转化为临床应用。所提出的平台的非破坏性性质使得能够在体外和体内重复评估ECM支架和再细胞化构建体的结构-功能关系,因此所提出的技术减少了跨多个时间点的破坏性分析方法的需要,而这种方法是昂贵的。此外,所提出的技术将有助于(a)支架生产方法的体外快速筛选和批次质量的无损评估;以及(b)跨多个时间点的非终端体内评估,从而提供所提出的双模平台将整合两种非电离辐射技术,用于无标记组织分析:(1)多光谱时间分辨荧光光谱(TRFS)系统,用于评估 ECM 成分和生物化学。血管生物材料的异质性;(2) 高频超声 (US) 成像,用于评估血管生物材料的结构特性和形态。这可以通过超声反向散射实现。用于平面扫描的显微镜(UBM)或用于旋转扫描的传统血管内超声(IVUS)将致力于开发一套用于体外和体内的定制工具(仪器和数据分析方法)。目标 2 侧重于证明双模平台作为评估血管支架特性的非破坏性工具的可行性。双模态平台作为体外研究和监测血管组织构建体形成的非破坏性工具的能力集中于证明双模态技术作为监测血管组织成熟的非破坏性工具的可行性。总之,本次拨款申请中提出的开发和验证技术为评估与成熟度相关的许多重要特征(组成、结构和功能)提供了一种非破坏性解决方案。这可能会提高我们生产工程血管组织的能力。 在实验室进行体内植入,可加快植入物的整合时间 与周围的宿主组织,从而恢复患者所需的生活质量,重点将放在工程血管组织的评估上,如果成功的话,这种非破坏性技术可用于评估各种工程组织。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leigh Gareth Griffiths其他文献

Leigh Gareth Griffiths的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leigh Gareth Griffiths', 18)}}的其他基金

Atraumatic Non-fibrotic Epicardial Pacing with E-Bioadhesive Devices
使用电子生物粘附装置进行无创伤性非纤维化心外膜起搏
  • 批准号:
    10637562
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
Immunology of xenogeneic extracellular matrix scaffolds for heart valve tissue engineering
心脏瓣膜组织工程异种细胞外基质支架的免疫学
  • 批准号:
    10379320
  • 财政年份:
    2021
  • 资助金额:
    $ 38.63万
  • 项目类别:
Immunology of xenogeneic extracellular matrix scaffolds for heart valve tissue engineering
心脏瓣膜组织工程异种细胞外基质支架的免疫学
  • 批准号:
    10608128
  • 财政年份:
    2021
  • 资助金额:
    $ 38.63万
  • 项目类别:
Immunology of xenogeneic extracellular matrix scaffolds for heart valve tissue engineering
心脏瓣膜组织工程异种细胞外基质支架的免疫学
  • 批准号:
    10199250
  • 财政年份:
    2021
  • 资助金额:
    $ 38.63万
  • 项目类别:
Bimodal platform for nondestructive analysis of engineered vascular biomaterials
用于工程血管生物材料无损分析的双模平台
  • 批准号:
    9280632
  • 财政年份:
    2015
  • 资助金额:
    $ 38.63万
  • 项目类别:
Xenogeneic Scaffolds for Heart Valve Tissue Engineering
用于心脏瓣膜组织工程的异种支架
  • 批准号:
    8503034
  • 财政年份:
    2013
  • 资助金额:
    $ 38.63万
  • 项目类别:
Xenogeneic Scaffolds for Heart Valve Tissue Engineering
用于心脏瓣膜组织工程的异种支架
  • 批准号:
    9251875
  • 财政年份:
    2013
  • 资助金额:
    $ 38.63万
  • 项目类别:
Xenogeneic Scaffolds for Heart Valve Tissue Engineering
用于心脏瓣膜组织工程的异种支架
  • 批准号:
    8704274
  • 财政年份:
    2013
  • 资助金额:
    $ 38.63万
  • 项目类别:

相似海外基金

Assessing the Impact of Age, Sex, and Menopause on Scleral Biomechanics and Gene Expression
评估年龄、性别和更年期对巩膜生物力学和基因表达的影响
  • 批准号:
    10726826
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
Providers and Older Pain Patients with Prescription Opioid Dependence: A Qualitative Study to Understand Barriers to Opioid Taper, Cessation, and Transition to Buprenorphine.
具有处方阿片类药物依赖性的提供者和老年疼痛患者:一项定性研究,旨在了解阿片类药物逐渐减少、戒断和过渡到丁丙诺啡的障碍。
  • 批准号:
    10671358
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
Sensitive periods for prenatal alcohol exposure: a longitudinal study of DNA methylation and subsequent mental health
产前酒精暴露的敏感期:DNA 甲基化和随后心理健康的纵向研究
  • 批准号:
    10573715
  • 财政年份:
    2023
  • 资助金额:
    $ 38.63万
  • 项目类别:
Fluoxetine recovery of synaptic dysfunction following juvenile global cerebral ischemia
氟西汀恢复青少年全脑缺血后突触功能障碍
  • 批准号:
    10509753
  • 财政年份:
    2022
  • 资助金额:
    $ 38.63万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10331944
  • 财政年份:
    2022
  • 资助金额:
    $ 38.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了