Massively scalable 3D electrophysiology and two-photon imaging in freely-moving animals
自由移动动物的大规模可扩展 3D 电生理学和双光子成像
基本信息
- 批准号:10687565
- 负责人:
- 金额:$ 130.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnimalsBehaviorBehavioralBiological AssayBrainCalciumCustomElectrodesElectronicsElectrophysiology (science)EnvironmentHeadHeightImageLearningMapsMicroscopeMicroscopicMotionMovementMusNatureNeurosciencesPreparationResolutionSensoryShapesSignal TransductionSleepStimulusStructureSynapsesTactileTouch sensationTravelVibrissaeawakebrain tissuebrain volumedensitydesignexperienceexperimental studyflexibilityinnovationmemory consolidationmemory processmillisecondnanoelectrode arraynanoelectrodesneural circuitsensory discriminationsensory systemtechnology platformtwo-photon
项目摘要
SUMMARY
Revealing how neural circuits encode and enable behavioral experiences is a fundamental problem in
neuroscience. Decoding and dissecting the mechanisms of signal flow across such circuits necessitates the
ability to record millisecond electrical dynamics and simultaneously map the spatial organization of cellular and
sub-cellular circuit motifs, in awake behaving animals. During natural behavior, animals actively acquire sensory
information as they move through the environment and use this information to guide ongoing actions. In this
context, unconstrained movement-related signals could allow sensory systems to efficiently predict self-
generated motion and extract additional information about the environment, thereby forming a stable internal
representation of the external world. However, a majority of recordings are performed in head-fixed animals
which imposes severe restrictions on how movement related signals shape ongoing sensory and memory
processing in the brain. Performing high-density electrophysiology and concomitant two-photon calcium imaging
is -at present- not feasible due to technical limitations and are therefore performed separately in both head fixed
and freely moving preparations. There is a great need for technology platforms that can combine high-resolution
electrical recordings across entire volumes of brain tissue and two-photon calcium imaging in freely behaving
animals. In this proposal we introduce a new paradigm for high-density electrophysiology across 3D volume with
capabilities to simultaneously perform two-photon calcium imaging. Our innovation termed NET-2P, comprises
of 3D Nanoelectrodes of variable height integrated onto the baseplate of a head-mounted mini two-photon
microscope. The Nanoelectrode array is integrated with custom-designed CMOS electronics and will in total
weigh 3.5 grams. The transparent and flexible nature of the nanoelectrode array allows for easy two-photon
access whilst facilitating rapid electrical mapping across large cortical sections. We propose to use the head-
mounted setup to 1) assay cortical travelling waves under tactile processing whilst mapping the underlying
cellular scale ensemble map via two-p imaging and 2) unravel how cortical ensembles and travelling waves that
emerge after a learning task enhance memory consolidation during sleep. In preliminary experiments performed
in head-fixed awake animals under passive whisker touch, we used planar transparent electrode array
recordings and conventional two-photon calcium imaging, and discovered microscopic travelling waves upon
whisker touch, a late reverberatory wave 100ms post touch, and sparse yet stable cellular ensemble structure
that supports wave propagation. We hypothesize that spontaneous travelling waves, including late reverberatory
components that emerge hundreds of milliseconds post stimulus, carry movement related, head-direction, and
volitional control signals, which will enhance travelling wave dynamics in freely-moving mice. By combining
electrophysiology and imaging-based ensemble mapping during natural sleep we will assay how spiking and
synaptic changes across cortical layers strengthen and enable robust functional cellular activity landscapes.
概括
揭示神经回路如何编码和实现行为体验是一个基本问题
神经科学。解码和剖析此类电路中信号流的机制需要
能够记录毫秒电动力学并同时绘制细胞和细胞的空间组织图
清醒行为动物的亚细胞回路基序。在自然行为过程中,动物主动获得感觉
当它们在环境中移动时获取信息,并使用这些信息来指导正在进行的行动。在这个
在上下文中,不受约束的运动相关信号可以让感觉系统有效地预测自我
生成运动并提取有关环境的附加信息,从而形成稳定的内部
外部世界的表征。然而,大多数录音是在头部固定的动物身上进行的
这对运动相关信号如何塑造持续的感觉和记忆施加了严格的限制
在大脑中进行处理。进行高密度电生理学和伴随双光子钙成像
由于技术限制,目前不可行,因此在两个固定头中单独执行
和自由移动的准备工作。非常需要能够结合高分辨率的技术平台
整个脑组织的电记录和自由行为的双光子钙成像
动物。在本提案中,我们引入了一种跨 3D 体积的高密度电生理学新范例
同时进行双光子钙成像的能力。我们的创新称为 NET-2P,包括
集成到头戴式迷你双光子基板上的可变高度 3D 纳米电极
显微镜。纳米电极阵列与定制设计的 CMOS 电子器件集成在一起,总共将
重3.5克。纳米电极阵列的透明和柔性性质允许轻松实现双光子
访问,同时促进大皮层部分的快速电映射。我们建议使用头部
安装装置用于 1) 分析触觉处理下的皮质行波,同时绘制底层
通过两点成像绘制细胞尺度集合图,2) 揭示皮质集合和行波如何
学习任务后出现,可增强睡眠期间的记忆巩固。在进行的初步实验中
在被动胡须触摸下头部固定的清醒动物中,我们使用平面透明电极阵列
记录和传统的双光子钙成像,并发现了微观行波
胡须触摸、触摸后 100 毫秒的后期反射波以及稀疏但稳定的细胞系综结构
支持波传播。我们假设自发行波,包括晚期混响
刺激后数百毫秒出现的成分,携带与运动相关的头部方向和
意志控制信号,这将增强自由移动小鼠的行波动力学。通过结合
在自然睡眠期间,我们将通过电生理学和基于成像的整体映射来分析尖峰和
跨皮质层的突触变化加强并实现强大的功能性细胞活动景观。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krishna jayant其他文献
Krishna jayant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krishna jayant', 18)}}的其他基金
The Nanoneedle Net: A flexible and transparent 3D nanoelectrode array for mapping intracellular dendritic dynamics at the cortical surface
Nanoneedle Net:一种灵活且透明的 3D 纳米电极阵列,用于绘制皮质表面的细胞内树突动力学
- 批准号:
10378637 - 财政年份:2020
- 资助金额:
$ 130.42万 - 项目类别:
The Nanoneedle Net: A flexible and transparent 3D nanoelectrode array for mapping intracellular dendritic dynamics at the cortical surface
Nanoneedle Net:一种灵活且透明的 3D 纳米电极阵列,用于绘制皮质表面的细胞内树突动力学
- 批准号:
10160915 - 财政年份:2020
- 资助金额:
$ 130.42万 - 项目类别:
相似国自然基金
稳健深度神经网络的误差分析及其在动物行为学领域的应用
- 批准号:12301651
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于植物甾醇颗粒和凝胶粒子构建双相乳液凝胶模拟动物脂肪组织弹塑性行为和感官特性的分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
群居灵长类动物对人类干扰的行为响应和适应机制研究——以四川白河国家级自然保护区川金丝猴为例
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
机器人-动物混合群体互动行为挖掘与强化研究
- 批准号:
- 批准年份:2021
- 资助金额:20 万元
- 项目类别:
相似海外基金
Changes in apical cochlear mechanics after cochlear implantation
人工耳蜗植入后耳蜗顶端力学的变化
- 批准号:
10730981 - 财政年份:2023
- 资助金额:
$ 130.42万 - 项目类别:
Implantable 3D fluorescence imaging with high-speed, addressable laser scanning in moving mice
通过高速、可寻址激光扫描对移动小鼠进行植入式 3D 荧光成像
- 批准号:
10614795 - 财政年份:2023
- 资助金额:
$ 130.42万 - 项目类别:
Multiphon imaging for understanding social brain function in tadpoles
多声子成像用于了解蝌蚪的社交脑功能
- 批准号:
10717610 - 财政年份:2023
- 资助金额:
$ 130.42万 - 项目类别:
Unlocking whole brain, layer-specific functional connectivity with 3D VAPER fMRI
通过 3D VAPER fMRI 解锁全脑、特定层的功能连接
- 批准号:
10643636 - 财政年份:2023
- 资助金额:
$ 130.42万 - 项目类别: