Cell Chirality Based In Vitro Models For Embryonic Development and Abnormalities
基于细胞手性的胚胎发育和异常体外模型
基本信息
- 批准号:8757997
- 负责人:
- 金额:$ 243万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimalsBiochemicalBiological AssayCell Culture TechniquesCellsClinicalCongenital AbnormalityCytoskeletal ProteinsDefectDevelopmentDevelopmental BiologyDifferentiation and GrowthDiseaseEmbryoEmbryonic DevelopmentEpithelialEpithelial CellsEthicsGenetic ScreeningGrowthGrowth FactorHandednessHeartHelix (Snails)HumanHuman bodyIn VitroIndividualIsomerismLeftLifeLigandsLinkLive BirthMeasurementMeasuresModelingMolecularMorphogenesisNodalOrganOrganismPatternPharmaceutical PreparationsPlantsPositioning AttributePropertyResearchRotationSignal PathwaySurfaceSystemTimeTractionTubular formationVertebratesbasecellular imagingembryo tissueembryonic stem cellhigh throughput screeningimprovedin vitro Modelin vivonovelpublic health relevancestem cell differentiationtool
项目摘要
DESCRIPTION (provided by applicant): Chirality, also known as handedness or left-right (LR) asymmetry, is a conserved feature in the development of multi-cellular organisms, and can be seen in the growth of climbing plants, the helices of snail shells, and the positioning of internal
organs in the human body. For human, defects in laterality such as isomerism (loss of asymmetry), and heterotaxia (a loss of concordance among the individual organs) are observed in more than 1 in 8000 live births, and have significant clinical implications. In vertebrates, epithelial chiral morphogenesis is important in establishing the LR asymmetric body plan, from the early nodal flow at the ventral node to the later heart c-looping and gut asymmetric rotation. Traditionally, LR asymmetry is studied with animal embryos in vivo, which is often very challenging. The direct manipulation of human embryos is restricted because of the obvious ethical concerns. Recently, we have recapitulated epithelial chiral morphogenesis on micropatterned surfaces. Now we want to further develop in vitro systems for studying embryonic LR axis development. Our rationale is that novel cell chirality based high-throughput platforms and a better understanding of molecular mechanisms of epithelial cell chirality can greatly facilitate the LR asymmetry research in developmental biology. We propose to use a combination of embryonic stem cell culture, micro-fabrication, live cell imaging, molecular assay, traction force measurement, and high-throughput screening as tools to elucidate the underlying biophysical and biochemical mechanisms for epithelial chiral morphogenesis. Our objectives are to establish multiscale in vitro models for LR asymmetry in development and to identify important signaling pathways and cytoskeletal proteins that affect epithelial cell chirality. Specific Aim 1 (SA1): Establish and optimize multiscale in vitro models for studying LR asymmetry in development. We propose to improve our 2D multicellular model by matching substrate stiffness and ligand type with that of native embryonic tissue and to extend to models at single cell level and 3D tubular cell sheet. Specific Aim 2 (SA2): Determine effects and mechanisms of stem cell differentiation, growth factors, drugs that are important for LR asymmetry. We aim to establish a link between patterned epithelial cell chirality and developmental LR asymmetry. Specific Aim 3 (SA3): Determine cellular machinery mechanisms in patterned cell chirality. This will allow us to identify the ultimate cellular machinery for the
emergence of chiral morphogenesis. Overall, if we are successful, these studies will establish novel, paradigm-shifting systems for measuring cell chirality in a high throughput fashion for studying LR asymmetry in development and disease, and screening genetic and biochemical factors that cause birth defects. In addition, this proposed research is transformative, and potentially open a new field of research: cell chirality, a fundamental cellular property defining the third axis of the cell.
描述(由申请人提供):手性,也称为旋手性或左右(LR)不对称性,是多细胞生物发育中的保守特征,可以在攀缘植物的生长、蜗牛的螺旋中看到外壳和内部的定位
人体的器官。对于人类来说,在超过八千分之一的活产儿中观察到异构性(不对称性丧失)和异位性(个体器官之间一致性丧失)等偏侧性缺陷,并且具有重大的临床意义。在脊椎动物中,上皮手性形态发生对于建立 LR 不对称身体计划非常重要,从腹侧节点的早期节点流到后来的心脏 C 环和肠道不对称旋转。传统上,LR 不对称性是通过体内动物胚胎来研究的,这通常非常具有挑战性。由于明显的伦理问题,对人类胚胎的直接操作受到限制。最近,我们概括了微图案表面上的上皮手性形态发生。现在我们想要进一步开发体外系统来研究胚胎 LR 轴发育。我们的理由是,基于新型细胞手性的高通量平台以及对上皮细胞手性分子机制的更好理解可以极大地促进发育生物学中LR不对称性的研究。我们建议结合使用胚胎干细胞培养、微加工、活细胞成像、分子测定、牵引力测量和高通量筛选作为工具来阐明上皮手性形态发生的潜在生物物理和生化机制。我们的目标是建立发育过程中 LR 不对称性的多尺度体外模型,并确定影响上皮细胞手性的重要信号通路和细胞骨架蛋白。具体目标 1 (SA1):建立和优化多尺度体外模型,用于研究发育中的 LR 不对称性。我们建议通过将基质刚度和配体类型与天然胚胎组织相匹配来改进我们的 2D 多细胞模型,并将其扩展到单细胞水平和 3D 管状细胞片层模型。具体目标 2 (SA2):确定对 LR 不对称重要的干细胞分化、生长因子、药物的影响和机制。我们的目标是建立图案化上皮细胞手性与发育性 LR 不对称性之间的联系。具体目标 3 (SA3):确定图案化细胞手性中的细胞机械机制。这将使我们能够确定最终的细胞机制
手性形态发生的出现。总的来说,如果我们成功,这些研究将建立新颖的、范式转换的系统,以高通量方式测量细胞手性,以研究发育和疾病中的 LR 不对称性,并筛选导致出生缺陷的遗传和生化因素。此外,这项拟议的研究具有变革性,并有可能开辟一个新的研究领域:细胞手性,一种定义细胞第三轴的基本细胞特性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leo Q. Wan其他文献
Asymmetrical positioning of cell organelles reflects the cell chirality of mouse myoblast cells
细胞器的不对称定位反映了小鼠成肌细胞的细胞手性
- DOI:
10.1063/5.0189401 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:6
- 作者:
Zeina Hachem;Courtney Hadrian;Lina Aldbaisi;Muslim Alkaabi;Leo Q. Wan;Jie Fan - 通讯作者:
Jie Fan
Engineered platforms for mimicking cardiac development and drug screening
用于模拟心脏发育和药物筛选的工程平台
- DOI:
10.1007/s00018-024-05231-1 - 发表时间:
2024-04-25 - 期刊:
- 影响因子:0
- 作者:
Madison Stiefbold;Haokang Zhang;Leo Q. Wan - 通讯作者:
Leo Q. Wan
Biomechanical Modeling of Cell Chirality and Symmetry Breaking of Biological Systems.
细胞手性和生物系统对称性破缺的生物力学建模。
- DOI:
10.1016/j.mbm.2024.100038 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:0
- 作者:
Tasnif Rahman;Frank Peters;Leo Q. Wan - 通讯作者:
Leo Q. Wan
Engineering anatomically shaped human bone grafts
工程解剖形状的人体骨移植物
- DOI:
10.1073/pnas.0905439106 - 发表时间:
2009-10-09 - 期刊:
- 影响因子:0
- 作者:
Warren L. Grayson;M. Fröhlich;K. Yeager;Sarindr Bhumiratana;M. Ete Chan;C. Cannizzaro;Leo Q. Wan;X. S. Liu;X. Edward Guo;G. Vunjak‐Novakovic - 通讯作者:
G. Vunjak‐Novakovic
Helical vasculogenesis driven by cell chirality
细胞手性驱动的螺旋血管发生
- DOI:
10.1126/sciadv.adj3582 - 发表时间:
2024-02-21 - 期刊:
- 影响因子:13.6
- 作者:
Haokang Zhang;Tasnif Rahman;Shuhan Lu;Alej;ro P Adam;ro;Leo Q. Wan - 通讯作者:
Leo Q. Wan
Leo Q. Wan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leo Q. Wan', 18)}}的其他基金
Engineering Human Organizer To Study Left-Right Symmetry Breaking
工程人类组织者研究左右对称性破缺
- 批准号:
10667938 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
- 批准号:
10630645 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Administrative support to R01 HL148104: Understanding Cardiac C-Looping Using Microscale In Vitro Models
R01 HL148104 的行政支持:使用微型体外模型了解心脏 C 环
- 批准号:
10630645 - 财政年份:2022
- 资助金额:
$ 243万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10210537 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10650246 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10838024 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
Understanding Cardiac C-Looping Using Microscale In Vitro Models
使用微型体外模型了解心脏 C 环
- 批准号:
10448260 - 财政年份:2021
- 资助金额:
$ 243万 - 项目类别:
相似国自然基金
七鳃鳗核转录因子(NF-кB)在TLR信号通路介导的先天性免疫应答中的活性及其机制的研究
- 批准号:31801973
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
水凝胶包封的永生化hBMSCs在肿瘤切除残腔中分泌cRGD-SWL-PE38KDEL重组蛋白治疗胶质瘤的研究
- 批准号:81802481
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
生化解析哺乳动物细胞自噬体与溶酶体膜融合的调控机制
- 批准号:31870830
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
CRIP1与斑马鱼衰老的相关性及作用机制研究
- 批准号:31801970
- 批准年份:2018
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
缅甸蟒免疫调节肽Cb-CATH1抗耐甲氧西林金黄色葡萄球菌感染的机制研究
- 批准号:31872223
- 批准年份:2018
- 资助金额:61.0 万元
- 项目类别:面上项目
相似海外基金
Blockade of cMYC oncogenic function by pregnancy-induced alterations and remodeling of the mammary gland
通过妊娠引起的乳腺改变和重塑来阻断 cMYC 致癌功能
- 批准号:
10734182 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Genetic and biophysical analysis of morphogen gradient formation
形态素梯度形成的遗传和生物物理分析
- 批准号:
10723239 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
The Impact of Beta- and Gamma-synucleins on Alpha-synuclein's Synaptic Function
β 和 γ 突触核蛋白对 α 突触核蛋白突触功能的影响
- 批准号:
10830522 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Structural and Functional Analysis of Nucleocytoplasmic Protein O-Glycosyltransferases in Plants
植物核胞质蛋白 O-糖基转移酶的结构和功能分析
- 批准号:
10648930 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别:
Generation and characterization of a Cre-Lox regulated transgenic zebrafish model of SBMA
Cre-Lox 调节的 SBMA 转基因斑马鱼模型的生成和表征
- 批准号:
10784254 - 财政年份:2023
- 资助金额:
$ 243万 - 项目类别: