Single Cell Mosaic Mutation Atlas of Human Organ
人体器官单细胞镶嵌突变图谱
基本信息
- 批准号:10687162
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAtlasesBayesian MethodBiological PhenomenaBrainCase StudyCell physiologyCellsComputer softwareComputing MethodologiesCopy Number PolymorphismDataData SetDetectionDevelopmentEcosystemEyeGeneticGenomicsGenotypeGoalsHeartHeart DiseasesHeart TransplantationHumanHuman bodyIndividualKnowledgeMachine LearningMalignant NeoplasmsMethodsMitochondrial DNAModelingMosaicismMutateMutationMutation DetectionNormal tissue morphologyOrganPhenotypePoint MutationPrevalencePrevention strategyResearchSomatic MutationTechnologyTissuesValidationbioinformatics toolcell typeclinical phenotypecomputerized toolscost effectivedata resourceearly onsetheart cellhuman diseasehuman tissueinsightmosaic variantnovelnovel strategiespreventsingle-cell RNA sequencingsynergismtooltranscriptome
项目摘要
PROJECT SUMMARY/ABSTRACT
Somatic mosaicism is a biological phenomenon that describes the presence of genetically distinct cells within a
subject. Mosaic mutations dictate numerous human phenotypes and are causal factors for a range of human
diseases such as autisim, cardiac disorders and cancers. Analysis of somatic mutations in normal tissues is
important for the understanding of both normal phenotype manifestations and the early onset of human
diseases. However, our current knowledge of the mosaic mutations is only the tip of the iceberg due to the
technical and computational challenges in detecting mosaic mutations with bulk genomic methods. In the past
3-5 years, high throughout single cell RNA sequencing (scRNA-seq) technologies have emerged as powerful
tools to dissect the cellular ecosystems of human tissues by profiling thousands of single cell transcriptomes.
The human cell atlas (HCA) projects have generated huge number of scRNA-seq datasets for many human
organs from eye to brain. Whereas these projects are focused on delineating cell types and cell states within
each tissue, they provide tremendous data resources to investigate the full spectrum of rare mosaic mutations
in human organs. The lack of robust computational tools presents as one major gap in knowledge to construct
a global mosaic mutation atlas of human organs from these data. Previous studies used bulk mutation calling
methods to perform single cell genotyping from scRNA-seq data, which however had low sensitivity that is
equivalent to bulk approaches. The central hypothesis is that rare mosaic mutations and their diversified
effects on cellular functions can be uncovered by genotyping single cells from scRNA-seq data. This project
has three major research goals: 1) Develop robust computational methods to accurately detect rare mosaic
mutations from scRNA-seq data. This includes a Bayesian method MosaiCopy for detection of copy number
variations, a toolkit MosaiTect for discovery of allele-specific point mutations, and a model-based method
MosaiMtTect to detect mutations in mtDNAs in individual cells. 2) Estimate the functional effects of mosaic
mutations in rare cells by developing a machine-learning software scGPS (single cell Genotype-Phenotype
Synergy). Additionally, this method will quantify the threshold of phenotype manifestation for each mosaic
mutation. 3) Genotype HCA datasets to investigate the cell type and cell state specific mutations and their
functions in affected cells of human organs. As a case study and validation of the results, the in-house heart
cell atlas datasets will be generated from healthy hearts (collected during heart transplantation). The overall
goal of this project is to develop novel computational methods to investigate the global pictures of mosaic
mutations and functional effects on cells of human organs. Successful completion of this project will lead to
new insights into the effects of genomic diversification on cell functions within human body. In long term, this
study will have significant impact on the development of novel prevention strategies for human diseases by
inhibiting the manifestations of clinical phenotypes at the very early stage of normal development.
项目概要/摘要
体细胞嵌合是一种生物现象,描述了遗传上不同的细胞在体内的存在。
主题。嵌合突变决定了许多人类表型,并且是一系列人类疾病的致病因素
自闭症、心脏病和癌症等疾病。正常组织中体细胞突变的分析是
对于理解正常表型表现和人类早期发病很重要
疾病。然而,我们目前对嵌合突变的了解只是冰山一角,因为
使用大量基因组方法检测嵌合突变的技术和计算挑战。在过去
3-5年内,高通量单细胞RNA测序(scRNA-seq)技术已成为强大的
通过分析数千个单细胞转录组来剖析人体组织的细胞生态系统的工具。
人类细胞图谱 (HCA) 项目已经为许多人类生成了大量的 scRNA-seq 数据集。
从眼睛到大脑的器官。而这些项目的重点是描绘细胞类型和细胞状态
每个组织,他们提供巨大的数据资源来研究罕见嵌合突变的全谱
在人体器官中。缺乏强大的计算工具是构建知识方面的一个主要差距
根据这些数据绘制人体器官的全球镶嵌突变图谱。先前的研究使用批量突变调用
从 scRNA-seq 数据进行单细胞基因分型的方法,但其灵敏度较低
相当于批量方法。中心假设是罕见的嵌合突变及其多样化
通过 scRNA-seq 数据对单细胞进行基因分型可以揭示对细胞功能的影响。这个项目
具有三个主要研究目标:1)开发强大的计算方法来准确检测罕见的马赛克
scRNA-seq 数据中的突变。这包括用于检测拷贝数的贝叶斯方法 MosaiCopy
变异、用于发现等位基因特异性点突变的工具包 MosaiTect 以及基于模型的方法
MosaiMtTect 用于检测单个细胞中 mtDNA 的突变。 2)预估马赛克的功能效果
通过开发机器学习软件 scGPS(单细胞基因型-表型)来研究稀有细胞的突变
协同作用)。此外,该方法将量化每个嵌合体表型表现的阈值
突变。 3) 基因型 HCA 数据集,用于研究细胞类型和细胞状态特异性突变及其
在人体器官受影响的细胞中发挥功能。作为案例研究和结果验证,内部心脏
细胞图谱数据集将从健康心脏(在心脏移植期间收集)生成。整体
该项目的目标是开发新颖的计算方法来研究马赛克的全局图片
突变和对人体器官细胞的功能影响。该项目的成功完成将导致
关于基因组多样化对人体内细胞功能的影响的新见解。从长远来看,这
研究将对人类疾病新型预防策略的制定产生重大影响
在正常发育的早期阶段抑制临床表型的表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruli Gao其他文献
Ruli Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruli Gao', 18)}}的其他基金
Defining cellular mechanisms of chronic graft failure in transplanted hearts with single cell multi-omics
用单细胞多组学定义移植心脏慢性移植失败的细胞机制
- 批准号:
10334266 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Defining cellular mechanisms of chronic graft failure in transplanted hearts with single cell multi-omics
用单细胞多组学定义移植心脏慢性移植失败的细胞机制
- 批准号:
10611353 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Characterizing the functional genomic atlas of human placenta and unveiling the prenatal programming of early-life development
表征人类胎盘的功能基因组图谱并揭示早期生命发育的产前编程
- 批准号:
10580294 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Metabolic age to define influences of the lipidome on brain aging in Alzheimer's disease
代谢年龄确定脂质组对阿尔茨海默氏病大脑衰老的影响
- 批准号:
10643738 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cell-of-Origin Footprints of Passenger Mutations in Human Lung Cancer
人类肺癌中乘客突变的细胞起源足迹
- 批准号:
10871512 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Improving Genetic Diagnosis for African Ancestry Populations
改善非洲血统人群的基因诊断
- 批准号:
10736833 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mapping spatiotemporal dynamics during enterovirus infection across cells and tissues
绘制肠道病毒跨细胞和组织感染过程中的时空动态
- 批准号:
10875953 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: