Single Cell Mosaic Mutation Atlas of Human Organ
人体器官单细胞镶嵌突变图谱
基本信息
- 批准号:10687162
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAllelesAtlasesBayesian MethodBiological PhenomenaBrainCase StudyCell physiologyCellsComputer softwareComputing MethodologiesCopy Number PolymorphismDataData SetDetectionDevelopmentEcosystemEyeGeneticGenomicsGenotypeGoalsHeartHeart DiseasesHeart TransplantationHumanHuman bodyIndividualKnowledgeMachine LearningMalignant NeoplasmsMethodsMitochondrial DNAModelingMosaicismMutateMutationMutation DetectionNormal tissue morphologyOrganPhenotypePoint MutationPrevalencePrevention strategyResearchSomatic MutationTechnologyTissuesValidationbioinformatics toolcell typeclinical phenotypecomputerized toolscost effectivedata resourceearly onsetheart cellhuman diseasehuman tissueinsightmosaic variantnovelnovel strategiespreventsingle-cell RNA sequencingsynergismtooltranscriptome
项目摘要
PROJECT SUMMARY/ABSTRACT
Somatic mosaicism is a biological phenomenon that describes the presence of genetically distinct cells within a
subject. Mosaic mutations dictate numerous human phenotypes and are causal factors for a range of human
diseases such as autisim, cardiac disorders and cancers. Analysis of somatic mutations in normal tissues is
important for the understanding of both normal phenotype manifestations and the early onset of human
diseases. However, our current knowledge of the mosaic mutations is only the tip of the iceberg due to the
technical and computational challenges in detecting mosaic mutations with bulk genomic methods. In the past
3-5 years, high throughout single cell RNA sequencing (scRNA-seq) technologies have emerged as powerful
tools to dissect the cellular ecosystems of human tissues by profiling thousands of single cell transcriptomes.
The human cell atlas (HCA) projects have generated huge number of scRNA-seq datasets for many human
organs from eye to brain. Whereas these projects are focused on delineating cell types and cell states within
each tissue, they provide tremendous data resources to investigate the full spectrum of rare mosaic mutations
in human organs. The lack of robust computational tools presents as one major gap in knowledge to construct
a global mosaic mutation atlas of human organs from these data. Previous studies used bulk mutation calling
methods to perform single cell genotyping from scRNA-seq data, which however had low sensitivity that is
equivalent to bulk approaches. The central hypothesis is that rare mosaic mutations and their diversified
effects on cellular functions can be uncovered by genotyping single cells from scRNA-seq data. This project
has three major research goals: 1) Develop robust computational methods to accurately detect rare mosaic
mutations from scRNA-seq data. This includes a Bayesian method MosaiCopy for detection of copy number
variations, a toolkit MosaiTect for discovery of allele-specific point mutations, and a model-based method
MosaiMtTect to detect mutations in mtDNAs in individual cells. 2) Estimate the functional effects of mosaic
mutations in rare cells by developing a machine-learning software scGPS (single cell Genotype-Phenotype
Synergy). Additionally, this method will quantify the threshold of phenotype manifestation for each mosaic
mutation. 3) Genotype HCA datasets to investigate the cell type and cell state specific mutations and their
functions in affected cells of human organs. As a case study and validation of the results, the in-house heart
cell atlas datasets will be generated from healthy hearts (collected during heart transplantation). The overall
goal of this project is to develop novel computational methods to investigate the global pictures of mosaic
mutations and functional effects on cells of human organs. Successful completion of this project will lead to
new insights into the effects of genomic diversification on cell functions within human body. In long term, this
study will have significant impact on the development of novel prevention strategies for human diseases by
inhibiting the manifestations of clinical phenotypes at the very early stage of normal development.
项目摘要/摘要
体细胞镶嵌是一种生物学现象,描述了在A内存在遗传上不同细胞的存在
主题。镶嵌突变决定了许多人类表型,并且是一系列人类的因果因素
诸如Autisim,心脏病和癌症之类的疾病。分析正常组织中的体细胞突变是
对于理解正常表型表现和人类早期发作至关重要
疾病。但是,我们目前对镶嵌突变的了解仅是由于
用大量基因组方法检测镶嵌突变的技术和计算挑战。在过去
3 - 5年,整个单细胞RNA测序(SCRNA-SEQ)技术已经出现为强大
通过分析数千个单细胞转录组来剖析人体组织的细胞生态系统的工具。
人类细胞地图集(HCA)项目为许多人类生成了大量的SCRNA-Seq数据集
从眼到大脑的器官。尽管这些项目的重点是描绘细胞类型和细胞状态
每个组织,它们都提供了巨大的数据资源来研究稀有镶嵌突变的整个频谱
在人体器官中。缺乏强大的计算工具是构建知识的一个主要差距
从这些数据中,人体器官的全球镶嵌突变图集。以前的研究使用了散装突变调用
从SCRNA-SEQ数据中执行单细胞基因分型的方法,但是它具有低灵敏度
等效于批量方法。中心假设是罕见的镶嵌突变及其多样化
可以通过从SCRNA-SEQ数据中基因分型细胞来发现对细胞功能的影响。这个项目
有三个主要的研究目标:1)开发可靠的计算方法以准确检测稀有的马赛克
来自SCRNA-SEQ数据的突变。这包括用于检测拷贝数的贝叶斯方法的镶嵌
变体,用于发现等位基因特异性点突变的工具包Mosaitect和一种基于模型的方法
Mosaimttect检测单个细胞中mtDNA突变。 2)估计马赛克的功能效应
通过开发机器学习软件SCGP(单细胞基因型 - 表型)中稀有细胞中的突变
协同作用)。此外,此方法将量化每个镶嵌物的表型表现阈值
突变。 3)基因型HCA数据集研究细胞类型和细胞状态特异性突变及其它们
在人体器官的受影响细胞中起作用。作为案例研究和结果验证,内部心脏
细胞图集数据集将是由健康心脏(在心脏移植期间收集)产生的。总体
该项目的目标是开发新颖的计算方法来研究马赛克的全球图片
对人体器官细胞的突变和功能作用。成功完成该项目将导致
对基因组多样化对人体细胞功能的影响的新见解。从长远来看,这个
研究将对人类疾病的新型预防策略的发展产生重大影响
在正常发育的早期阶段抑制临床表型的表现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruli Gao其他文献
Ruli Gao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruli Gao', 18)}}的其他基金
Defining cellular mechanisms of chronic graft failure in transplanted hearts with single cell multi-omics
用单细胞多组学定义移植心脏慢性移植失败的细胞机制
- 批准号:
10334266 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Defining cellular mechanisms of chronic graft failure in transplanted hearts with single cell multi-omics
用单细胞多组学定义移植心脏慢性移植失败的细胞机制
- 批准号:
10611353 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于等位基因非平衡表达的鹅掌楸属生长量杂种优势机理研究
- 批准号:32371910
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the functional genomic atlas of human placenta and unveiling the prenatal programming of early-life development
表征人类胎盘的功能基因组图谱并揭示早期生命发育的产前编程
- 批准号:
10580294 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Metabolic age to define influences of the lipidome on brain aging in Alzheimer's disease
代谢年龄确定脂质组对阿尔茨海默氏病大脑衰老的影响
- 批准号:
10643738 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Cell-of-Origin Footprints of Passenger Mutations in Human Lung Cancer
人类肺癌中乘客突变的细胞起源足迹
- 批准号:
10871512 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Improving Genetic Diagnosis for African Ancestry Populations
改善非洲血统人群的基因诊断
- 批准号:
10736833 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Mapping spatiotemporal dynamics during enterovirus infection across cells and tissues
绘制肠道病毒跨细胞和组织感染过程中的时空动态
- 批准号:
10875953 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: