Molecular and cellular mechanisms underlying the nerve dependence of regeneration
神经再生依赖性的分子和细胞机制
基本信息
- 批准号:10684856
- 负责人:
- 金额:$ 40.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAmbystomaAmphibiaAnatomyAnimalsBehaviorBiological MetamorphosisBiologyBody partBrainCell CommunicationCellsComparative StudyComplementComplexDependenceDevelopmentEnvironmentEvolutionFoundationsGene Transfer TechniquesGenesGenomeGoalsHumanLifeLife Cycle StagesLimb structureLinkMediatingMethodsMolecularNatural regenerationNerveNervous SystemNewtsOrganPathologyPhysiologicalPhysiologyPleurodelesPropertyProtein SecretionRegenerative MedicineRegenerative capacityResearchSalamanderSignal InductionTimeTissue-Specific Gene ExpressionTissuesVertebratesWorkcell typegenome editinglimb regenerationneuralneurotransmissionnovel strategiesprogramsregeneration modelregenerativerib bone structurestem cell proliferationstem cells
项目摘要
PROJECT SUMMARY
Cells are the building blocks of life. The functions of tissues and organs emerge from the dynamic properties and
interactions of cell types. The diversity of cell types and cellular states, over time scales ranging from minutes to
millennia, underlies the anatomical and physiological diversity of animals. Because cellular diversity is ultimately
the result of differential gene expression, studying organismal biology from a cell type perspective is necessary
to link genes to animal physiology and pathology. The overarching goal of our research program is to
understand how the molecular diversity and evolution of cell types determines how vertebrate species adapt
differently to changes in their environment. We focus on problems where the evolutionary perspective has the
potential to reveal fundamental principles that may generalize across species. A smaller part of the lab
investigates the relationships between cell type evolution and the evolution of behavior. The majority of the lab
focuses on regeneration, to elucidate how dynamic interactions of cell types in space and time result in the
regeneration of complex tissues and body parts, with an emphasis on those cell types and interactions that might
be conserved across body parts and species.
Our goal for the next five years is to lay the foundations of this research program. Specifically, we propose to
develop further the Spanish ribbed newt Pleurodeles waltl as a model for regeneration. Urodele amphibians such
as newts are the terrestrial vertebrates with the highest regenerative capacity. Pleurodeles is an excellent
complement to axolotl, the most popular amphibian model for regeneration: (i) these two species diverged about
150 million years ago, and their comparison may reveal fundamental principles of regeneration; (ii) unlike axolotl,
Pleurodeles has a complete life cycle, including metamorphosis into a true adult stage; (iii) Pleurodeles has a
sequenced genome and established methods for transgenesis and genome editing.
To maximize the impact of our research and discover evolutionarily conserved mechanisms, we will focus on
the nerve dependence of regeneration, a phenomenon observed in almost every highly-regenerative species
and in a variety of tissues. Specifically, we will compare brain and limb regeneration. First, we will determine
whether regeneration depends on the same neural secreted proteins in these two different contexts. Second,
we will clarify whether neural activity is necessary to mediate the effects of nerves on regeneration. Third, we
will decipher how neural signals induce the proliferation of stem or progenitor cells.
Impact: this work will reveal molecular and cellular mechanisms of regeneration that generalize across body
parts, and lay the foundation for comparative studies across species. The discovery of general mechanisms
underlying regeneration will clarify why many species, including humans, have lost regenerative capacity, and
may catalyze the development of new approaches for human regenerative medicine.
项目摘要
细胞是生命的基础。组织和器官的功能从动态特性中出现
细胞类型的相互作用。细胞类型和细胞状态的多样性,随着时间的流逝,范围从分钟到
几千年来,动物的解剖学和生理多样性是基础。因为蜂窝多样性最终是
差异基因表达的结果,从细胞类型的角度研究生物学是必要的
将基因与动物生理和病理联系起来。我们研究计划的总体目标是
了解分子多样性和细胞类型的演变如何决定脊椎动物物种如何适应
与环境变化不同。我们专注于进化观点具有的问题
揭示可能跨越物种的基本原理的潜力。实验室的较小部分
研究细胞类型演化与行为演变之间的关系。实验室的大多数
专注于再生,以阐明细胞类型在时空中的动态相互作用如何导致
复杂组织和身体部位的再生,重点是这些细胞类型和相互作用
在身体部位和物种之间保守。
我们接下来五年的目标是为该研究计划奠定基础。具体来说,我们建议
进一步发展西班牙肋骨纽特胸膜waltl作为再生的典范。 Urodele两栖动物这样
因为纽约是陆生脊椎动物,其再生能力最高。 Pleurodeles是一个很好的
补充Axolotl是最受欢迎的两栖动物模型的再生:(i)这两个物种围绕
15000万年前,它们的比较可能揭示了再生的基本原则; (ii)与Axolotl不同,
胸腔具有完整的生命周期,包括变形为真正的成年阶段。 (iii)Pleurodeles有一个
测序的基因组和已建立的转基因和基因组编辑方法。
为了最大化我们的研究的影响并发现进化保守的机制,我们将重点关注
再生的神经依赖性,几乎在所有高度再生物种中都观察到的现象
并在多种组织中。具体而言,我们将比较大脑和肢体再生。首先,我们将确定
在这两种不同的情况下,再生是否取决于相同的神经分泌蛋白。第二,
我们将阐明是否需要神经活动来介导神经对再生的影响。第三,我们
将破译神经信号如何诱导茎或祖细胞的增殖。
影响:这项工作将揭示再生的分子和细胞机制,这些机制遍布体内
零件,并为跨物种的比较研究奠定基础。一般机制的发现
潜在的再生将阐明为什么包括人类在内的许多物种失去了再生能力,而
可能会促进人类再生医学新方法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Antonietta Tosches其他文献
A generalization of Kahler Einstein metrics for Fano manifolds with non- vanishing Futaki invariant
具有非消失 Futaki 不变量的 Fano 流形的 Kahler Einstein 度量的推广
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Norimoto;Lorenz A. Fenk;Hsing-Hsi Li;Maria Antonietta Tosches;Tatiana Gallego-Flores;David Hain;Sam Reiter;Riho Kobayashi;Angeles Macias;Anja Arends;Michaela Klinkmann & Gilles Laurent;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;中村聡;中村聡;中村聡 - 通讯作者:
中村聡
ケーラーアインシュタイン計量の存在問題に関するサーベイ
科勒-爱因斯坦度量存在性问题综述
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Norimoto;Lorenz A. Fenk;Hsing-Hsi Li;Maria Antonietta Tosches;Tatiana Gallego-Flores;David Hain;Sam Reiter;Riho Kobayashi;Angeles Macias;Anja Arends;Michaela Klinkmann & Gilles Laurent;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;中村聡 - 通讯作者:
中村聡
ケーラーアインシュタイン計量と大偏差原理
科勒-爱因斯坦度量和大偏差原理
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Norimoto;Lorenz A. Fenk;Hsing-Hsi Li;Maria Antonietta Tosches;Tatiana Gallego-Flores;David Hain;Sam Reiter;Riho Kobayashi;Angeles Macias;Anja Arends;Michaela Klinkmann & Gilles Laurent;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;中村聡;中村聡 - 通讯作者:
中村聡
H-functional and Matsushima type decomposition theorem
H 泛函和 Matsushima 型分解定理
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Norimoto;Lorenz A. Fenk;Hsing-Hsi Li;Maria Antonietta Tosches;Tatiana Gallego-Flores;David Hain;Sam Reiter;Riho Kobayashi;Angeles Macias;Anja Arends;Michaela Klinkmann & Gilles Laurent;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura - 通讯作者:
Satoshi Nakamura
Deformation of coupled Kahler-Einstein metrics
卡勒-爱因斯坦耦合度量的变形
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Norimoto;Lorenz A. Fenk;Hsing-Hsi Li;Maria Antonietta Tosches;Tatiana Gallego-Flores;David Hain;Sam Reiter;Riho Kobayashi;Angeles Macias;Anja Arends;Michaela Klinkmann & Gilles Laurent;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;Satoshi Nakamura;中村聡;中村聡;中村聡;Satoshi Nakamura - 通讯作者:
Satoshi Nakamura
Maria Antonietta Tosches的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
利用再生模式生物蝾螈(Ambystoma mexicanum)研究启动脊髓再生的机制
- 批准号:31771611
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Blastema-independent Mechanism for Regeneration in Salamanders
蝾螈的不依赖胚基的再生机制
- 批准号:
10379572 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Blastema-independent Mechanism for Regeneration in Salamanders
蝾螈的不依赖胚基的再生机制
- 批准号:
10553618 - 财政年份:2022
- 资助金额:
$ 40.5万 - 项目类别:
Safeguarding Genetic Resources of Aquatic Biomedical Models
保护水生生物医学模型遗传资源
- 批准号:
10600565 - 财政年份:2020
- 资助金额:
$ 40.5万 - 项目类别:
Elucidation of cellular reprogramming processes that drive lens regeneration in axolotl as a basis for future therapeutic approaches
阐明驱动蝾螈晶状体再生的细胞重编程过程,作为未来治疗方法的基础
- 批准号:
9918425 - 财政年份:2019
- 资助金额:
$ 40.5万 - 项目类别: