Live-Cell Chromatin Imaging and Biology: Application to Extrachromosomal DNA
活细胞染色质成像和生物学:在染色体外 DNA 中的应用
基本信息
- 批准号:10685017
- 负责人:
- 金额:$ 144.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAutomobile DrivingBiochemicalBiologyCellsChromatinChromatin StructureChromosomesDiseaseDisease ManagementDissectionDrug resistanceEnsureFoundationsGene ExpressionGene Expression RegulationGeneticGenetic TranscriptionGenomeGenome engineeringGenomic approachGenomicsHealthHealth PromotionHumanImageLabelMalignant NeoplasmsMeasurementMethodsMicroscopyMitosisModernizationMolecularMonitorNamesNational Cancer InstituteOncogenesOpticsOrganOrganismOutcomePatientsPhysiologicalProcessRegulationRegulatory ElementResolutionTimeTissuesVisualizationcancer genomecancer typedesignextrachromosomal DNAgenetic approachhigh rewardhigh riskimprovedinnovationmolecular dynamicsnovel strategiespopulation basedprogramssegregationspatiotemporalstemtechnology developmenttooltumor heterogeneity
项目摘要
PROJECT SUMMARY
Genome regulation is the prime mechanism that governs the precise spatiotemporal gene expression program
that, in turn, establishes and maintains the cellular states in tissues and organs in multicellular organisms. In
humans, genomic changes that alter this regulation can cause a wide range of diseases such as cancer.
Demystifying genome regulation has become a central task of modern biology in the post-genomic era and is
the foundation for effective disease management and promotion of health. Homeostatic genome regulation
ensures precise spatiotemporal chromosomal gene regulation in properly insulated chromatin structures, in the
cis-configuration (same chromosome), and through faithful symmetric segregation during mitosis. In stark
contrast, these rules are broken in human cancers particularly in the form of extrachromosomal DNA (ecDNA)
that enables insulation crossover, trans regulation, and asymmetric inheritance. Named as a 2021 Cancer Grand
Challenge by the National Cancer Institute, megabase-sized circular ecDNA typically contains common
oncogenes and regulatory elements present in major human cancer types, driving massive oncogene
amplification and expression, enabling intra-tumoral heterogeneity, and conferring drug resistance and poor
patient survival. The fundamental molecular mechanisms governing ecDNA expression, interaction, and
propagation are largely unknown. Although powerful biochemical, genetic, and genomic approaches have laid
the conceptual framework of modern understanding of genome regulation, the largely population-based, time-
averaged, and sometimes out-of-context measurements are insufficient to fully describe the spatially
compartmentalized, temporally dynamic, and physiologically relevant higher-order interactions in single live cells.
The fundamental challenges stem from lack of chromatin tools to label the intrinsically heterogeneous chromatin,
limited spatiotemporal resolution to monitor the highly concentrated and dynamic molecular transactions, and
the paucity of quantitative and rigorous methods to extract fundamental physical rules underlying genome
regulatory processes. In this project, we plan to overcome these primitive challenges by initiating a radically
distinctive technological development of robust, efficient, and multiplexable chromatin labeling strategies for live-
cell chromatin biology, which will allow us to apply them to address the fundamental regulation of ecDNA in the
cancer genome. We will integrate advanced imaging, cutting-edge microscopy, modern synthetic genome
engineering, and optical/genetic perturbation to systematically study the basic mechanisms by which ecDNA
orchestrates massive oncogene transcription, extensive chromosomal remodeling, and asymmetric segregation
hitherto intractable by conventional biochemical, genetic, or genomic methods. Positive outcome of these cutting-
edge approaches and high-risk high-reward questions embedded in our proposal will have a transformative
impact on mechanistic dissection of cancer genome regulation and may help us to uncover an Achilles' heel with
which to target ecDNA-driven cancer, thereby affording wide-ranging positive influence on human health.
项目概要
基因组调控是控制精确时空基因表达程序的主要机制
反过来,它建立并维持多细胞生物组织和器官的细胞状态。在
对于人类来说,改变这种调节的基因组变化可能会导致多种疾病,例如癌症。
揭开基因组调控的神秘面纱已成为后基因组时代现代生物学的中心任务,
有效的疾病管理和促进健康的基础。稳态基因组调控
确保正确隔离的染色质结构中精确的时空染色体基因调控
顺式构型(相同染色体),并通过有丝分裂过程中忠实的对称分离。赤裸裸地
相比之下,这些规则在人类癌症中被打破,特别是以染色体外 DNA (ecDNA) 的形式
实现绝缘交叉、反式调节和不对称继承。被评为 2021 年癌症大奖
受到国家癌症研究所的挑战,兆碱基大小的环状 ecDNA 通常包含常见的
致癌基因和调控元件存在于主要人类癌症类型中,驱动大量致癌基因
扩增和表达,实现肿瘤内异质性,并赋予耐药性和不良
患者生存。控制 ecDNA 表达、相互作用和合成的基本分子机制
传播很大程度上是未知的。尽管强大的生化、遗传学和基因组方法已经奠定了
现代理解基因组调控的概念框架,主要是基于人群的、时间-
平均的,有时脱离上下文的测量不足以充分描述空间
单个活细胞中分隔的、时间动态的和生理相关的高阶相互作用。
根本挑战源于缺乏染色质工具来标记本质上异质的染色质,
有限的时空分辨率来监测高度集中和动态的分子交易,以及
缺乏定量和严格的方法来提取基因组的基本物理规则
监管流程。在这个项目中,我们计划通过发起一个彻底的解决方案来克服这些原始挑战。
稳健、高效、可多重染色质标记策略的独特技术开发,用于活体染色质标记
细胞染色质生物学,这将使我们能够应用它们来解决细胞中 ecDNA 的基本调控问题
癌症基因组。我们将整合先进的成像、尖端显微镜、现代合成基因组
工程和光学/遗传微扰系统地研究 ecDNA 的基本机制
协调大量癌基因转录、广泛的染色体重塑和不对称分离
迄今为止,传统的生化、遗传或基因组方法难以处理。这些削减的积极成果-
我们提案中嵌入的边缘方法和高风险高回报问题将具有变革性
对癌症基因组调控机制剖析的影响,可能有助于我们发现致命弱点
它针对 ecDNA 驱动的癌症,从而对人类健康产生广泛的积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liangqi Xie其他文献
Liangqi Xie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
- 批准号:71871028
- 批准年份:2018
- 资助金额:46.0 万元
- 项目类别:面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
- 批准号:31771225
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the Role of YAP and TAZ in the Aging Human Ovary
阐明 YAP 和 TAZ 在人类卵巢衰老中的作用
- 批准号:
10722368 - 财政年份:2023
- 资助金额:
$ 144.9万 - 项目类别:
Identifying epigenetic factors in control of epidermal stem cell longevity in the adult skin
识别控制成人皮肤表皮干细胞寿命的表观遗传因素
- 批准号:
10723212 - 财政年份:2023
- 资助金额:
$ 144.9万 - 项目类别:
Engineering locus-specific binders to DNA modifications
工程化位点特异性结合剂以进行 DNA 修饰
- 批准号:
10593668 - 财政年份:2023
- 资助金额:
$ 144.9万 - 项目类别:
ECM remodeling and crosstalk with cell fate in zebrafish ligament regeneration
斑马鱼韧带再生中 ECM 重塑和细胞命运的串扰
- 批准号:
10748627 - 财政年份:2023
- 资助金额:
$ 144.9万 - 项目类别:
The role of PPARγ in astrocyte pathobiology after exposure to repetitive mild traumatic brain injury
PPARγ 在重复性轻度脑外伤后星形胶质细胞病理学中的作用
- 批准号:
10739968 - 财政年份:2023
- 资助金额:
$ 144.9万 - 项目类别: