A Second Look at DREAM: Towards a New Paradigm in Meibomian Gland Evaluation Using Artificial Intelligence
重新审视 DREAM:利用人工智能迈向睑板腺评估的新范式
基本信息
- 批准号:10703363
- 负责人:
- 金额:$ 17.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAreaArtificial IntelligenceAtrophicCharacteristicsClassificationClinicalClinical DataClinical ManagementClinical TrialsClinical assessmentsConsumptionCorrelation StudiesDataData SetDatabasesDiagnosisEvaluationEyelid structureFatty AcidsFilmGlandGoalsHandHealthHumanImageImage AnalysisIndividualLaboratoriesLearningLengthLinkLipidsMachine LearningMeasurementMeasuresMedical HistoryMedical ImagingMethodologyMethodsMorphologyOsmolar ConcentrationOutcomePathologicPathologyPatientsPersonal SatisfactionPhenotypeProcessProductionPropertyPublishingQuality of lifeQuestionnairesRandomized Controlled Clinical TrialsRiskScanningSchemeSecond Look SurgerySeriesSerumSigns and SymptomsSocietiesStandardizationSymptomsTechnologyThinnessTimeTrainingUpdateVisualWidthWorkalgorithm trainingaqueousclinical databasecostdata managementdemographicsevaporationeye drynessimprovedmachine learning algorithmmeibomian glandmeibomian gland dysfunctionnovelocular surfaceresearch clinical testingresponsesupervised learningsymptomatologyunsupervised learning
项目摘要
Project Summary
Dry eye (DE) is a highly prevalent condition with significant impacts on individuals and society that
continues to evade easy diagnosis and treatment. The most common cause of DE is thought to be Meibomian
gland dysfunction (MGD). The Meibomian glands in the upper and lower eyelids secrete lipids that form a thin
film covering the aqueous tears and inhibit their evaporation. In MGD, it is thought that inadequate and/or poor
quality tear lipids are secreted, leading to tear film instability, evaporation, and symptoms of DE. The glandular
changes that occur in MGD are not well understood, nor are we able to identify which aspects of MGD pose
the greatest risk for tear film instability and DE.
The Dry Eye Assessment and Management (DREAM) Study was a clinical trial of ω3 fatty acid
supplements for the treatment of DE. Over the course of the trial a large database of meibography images –
infrared images of the everted eyelids that reveal the Meibomian glands – was compiled and analyzed using a
novel scheme to characterize 13 different aspects of the glands by visual inspection and analyze their
relationships to the clinically assessed quality of the secreted lipids. The process was arduous and time
consuming, inherently subject to human bias, and provided little new information on the links between
Meibomian gland characteristics and DE signs and symptoms.
Recent advances in artificial intelligence (AI) have allowed us to train supervised machine learning
algorithms on meibography images to automatically detect and quantify detailed morphological features of the
individual glands. These detailed morphological features potentially contain a wealth of information about the
health and functioning of the Meibomian glands, and could provide valuable information on the mechanisms
behind MGD and its clinical implications. A further emerging AI technology for use in medical imaging –
unsupervised discriminative feature learning – mitigates the human bias, and could potentially discover
previously unidentified properties in meibography images, and possible links to crucial clinical endpoints like
tear film instability and DE symptoms.
In this project, we propose to utilize this new AI technology to re-analyze the DREAM Study clinical
database of meibography images to dramatically extend their initial findings. Specifically, we will employ
unsupervised discriminative feature learning to mitigate the human bias in meibography analysis, discover
previously unrecognized features of the Meibomian glands, and to analyze the links between these features
and MGD, tear film instability, and the clinical signs and symptoms indicative of DE.
项目摘要
干眼症(DE)是一种高度普遍的状况,对个人和社会产生重大影响
继续逃避简单的诊断和治疗。 DE的最常见原因被认为是Meibomian
腺功能障碍(MGD)。上眼睑和下眼睑中的Meibomian腺体分泌脂质,形成薄的脂质
覆盖水性眼泪并抑制其蒸发的薄膜。在MGD中,人们认为不足和/或贫穷
优质的泪液是分泌的,导致撕裂膜不稳定性,蒸发和DE症状。腺体
MGD中发生的变化尚不清楚,我们无法确定MGD姿势的哪些方面
撕裂膜不稳定和DE的最大风险。
干眼评估和管理(DREAM)研究是ω3脂肪酸的临床试验
用于治疗的补充。在试验过程中
露出梅博米亚腺的灭眼皮的红外图像是使用A编译和分析的
通过视觉检查来表征腺体的13个不同方面的新颖方案,并分析其
与分泌脂质的临床评估质量的关系。这个过程是充满活力和时间的
消费,固有地受到人类偏见的影响,并提供有关链接之间几乎没有的新信息
Meibomian腺体的特征以及符号和符号。
人工智能(AI)的最新进展使我们能够培训监督的机器学习
大缩影图像上的算法自动检测和量化了该图像的详细形态特征
个别腺体。这些详细的形态特征可能包含有关
Meibomian腺体的健康和功能,可以提供有关机制的宝贵信息
MGD及其临床意义的背后。进一步的新兴AI技术用于医学成像 -
无监督的歧视性特征学习 - 减轻人类的偏见,并可能发现
以前未知的物质图像中的特性,以及与关键临床终点的可能链接
泪膜不稳定和症状。
在这个项目中,我们建议利用这种新的AI技术重新分析梦想研究
大缩影图像的数据库可极大地扩展其初始发现。具体来说,我们将雇用
无监督的歧视性特征学习以减轻人为分析中的人类偏见,发现
以前无法识别的Meibomian腺体,并分析这些功能之间的链接
和MGD,泪膜不稳定性以及指示DE的临床体征和符号。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Meng Ching Lin其他文献
Meng Ching Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Meng Ching Lin', 18)}}的其他基金
A Second Look at DREAM: Towards a New Paradigm in Meibomian Gland Evaluation Using Artificial Intelligence
重新审视 DREAM:利用人工智能迈向睑板腺评估的新范式
- 批准号:
10432877 - 财政年份:2022
- 资助金额:
$ 17.84万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 17.84万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 17.84万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 17.84万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 17.84万 - 项目类别: