Non-canonical mechanisms of excitotoxicity
兴奋性毒性的非典型机制
基本信息
- 批准号:10679904
- 负责人:
- 金额:$ 3.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:Acute Brain InjuriesAddressAnimal ModelAreaBlood VesselsBrainBrain InjuriesCationsCellsCerebrovascular CirculationCessation of lifeClinicalClinical TrialsComplexDistalElectrophysiology (science)EventFailureFutureGlutamatesGoalsHomeostasisHourImaging TechniquesInfarctionInjuryInterventionIntervention StudiesIschemiaIschemic StrokeKnock-outLinkLiteratureMeasuresMediatingMetabolicMethodsModelingMusN-MethylaspartateNeuronal InjuryNeuronsOutcomePathway interactionsPatientsPreventionProteinsRecoveryResearchRoleSliceSourceStrokeSystemTestingTherapeutic InterventionTissuesToxic effectTranslatingWorkbrain tissuecell injurychelationclinically relevantexcitotoxicityexperimental studyextracellularfluorescence imaginghypoperfusionimaging approachimprovedin vivoin vivo Modelknock-downneuroprotectionneurotoxicnovelnovel strategiespharmacologicpostsynapticpre-clinicalpresynapticpreventreceptorstroke modeltherapeutic targetuptakevoltage
项目摘要
PROJECT SUMMARY
This project addresses the underlying mechanisms that progress ischemic damage of vulnerable tissue that
surround acute brain injuries such as stroke. Our long-term goal is to identify the specific mechanisms that
transition metabolically compromised tissue to damaged, pro-death penumbra and to develop clinically relevant
therapeutic targets to improve patient survival after brain injury. While understanding of ischemic methods of
neuronal injury has been the primary focus, exploring specific mechanisms of consequence and potential
therapeutic targets has lagged far behind. This project looks specifically at Spreading Depolarizations (SDs)
which have recently been identified as contributing significantly to the progression of injury in vulnerable
penumbra. The main focus of these events has been on their contribution to prolonged NMDA-mediated Ca2+
influx and subsequent damage. However, SDs present a much more complex and underexplored surge of pre-
synaptic cation release and post-synaptic uptake through alternate pathways. Specifically both post-synaptic
activation of voltage-gated Ca2+ channels and increase in extracellular Zn2+ release and uptake have been linked
to the initiation and subsequent propagation of SD. Our central hypothesis is that SD-induced injury progression
in metabolically depleted tissue is mediated by dysregulation of non-NMDA-centric cation homeostasis.
Furthermore, agents that are selective to reduce alternative Ca2+ channel activation and/or decrease post-
synaptic Zn2+ uptake will reduce the downstream mediated damage that occurs following SD. We will use brain
slice and animal models to explore Zn2+ and Ca2+ specific mechanisms of injury as well as pharmacological
intervention to support compromised tissue during and after onset of SD. Specific Aim 1 focuses on the
hypothesis that neuronal voltage-gated Ca2+ channels contribute to post-synaptic uptake of intracellular Ca2+ and
lead to downstream cell execution. Neuronal Ca2+ loading will be assessed using a specific genetically modified
model and pharmacological intervention will be used to assess recovery in a metabolically compromised tissue
setting. Specific Aim 2 tests the hypothesis that disruption of Zn2+ homeostasis contributes to mechanisms of
SD-induced injury in vulnerable setting. Zn2+ wave in vulnerable tissue and specific stores of Zn2+ will be
assessed to explore where damaging levels are released. Specific Aim 3 then assess these mechanisms in an
in vivo setting. In all aims, both electrophysiological and imaging techniques will be used to assess specific
mechanisms in brain slice (Aim 1 and 2) and then translate into in vivo model (Aim 3). Pharmacological
intervention and specific knockdown models will explore where these cations contributions to damage and
identify where damaging levels of these cations originate. Completion of these aims should ascertain specific
mechanisms of Ca2+ and Zn2+-mediated injury following SD in vulnerable tissue and propose potential targets for
clinical prevention paradigms.
项目概要
该项目探讨了导致脆弱组织缺血性损伤的潜在机制,
围绕中风等急性脑损伤。我们的长期目标是确定具体机制
将代谢受损的组织转变为受损的促死亡半暗带并发展出临床相关性
提高脑损伤后患者生存率的治疗目标。在了解缺血方法的同时
神经元损伤一直是主要关注点,探索后果和潜在的具体机制
治疗目标远远落后。该项目专门研究传播去极化(SD)
最近被确定对易受伤害的人的伤害进展有重大影响
半影。这些事件的主要焦点在于它们对延长 NMDA 介导的 Ca2+ 的贡献
涌入和随后的损害。然而,SD 呈现出更为复杂且尚未充分探索的预
突触阳离子通过替代途径释放和突触后摄取。特别是突触后
电压门控 Ca2+ 通道的激活与细胞外 Zn2+ 释放和摄取的增加有关
SD 的启动和随后的传播。我们的中心假设是 SD 诱导的损伤进展
代谢耗尽的组织中的 NMDA 是由非 NMDA 中心的阳离子稳态失调介导的。
此外,选择性减少Ca2+通道激活和/或减少后钙通道的药物
突触 Zn2+ 摄取将减少 SD 后发生的下游介导的损伤。我们会用大脑
切片和动物模型探索 Zn2+ 和 Ca2+ 的具体损伤机制以及药理作用
SD 发作期间和之后对受损组织进行干预以支持受损组织。具体目标 1 重点关注
假设神经元电压门控 Ca2+ 通道有助于突触后细胞内 Ca2+ 的摄取,
导致下游细胞执行。神经元 Ca2+ 负荷将使用特定的转基因进行评估
模型和药物干预将用于评估代谢受损组织的恢复情况
环境。具体目标 2 检验了以下假设:Zn2+ 稳态的破坏有助于机制
SD 在脆弱环境中引起的伤害。脆弱组织中的 Zn2+ 波和 Zn2+ 的特定储存将
评估以探索破坏性水平的释放情况。具体目标 3 然后评估这些机制
体内设置。在所有目标中,电生理学和成像技术将用于评估特定的
大脑切片中的机制(目标 1 和 2),然后转化为体内模型(目标 3)。药理作用
干预和特定的击倒模型将探索这些阳离子对损害和影响的贡献
确定这些阳离子的破坏水平源自何处。完成这些目标应确定具体的
脆弱组织 SD 后 Ca2+ 和 Zn2+ 介导的损伤机制,并提出潜在的靶点
临床预防范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Bennett其他文献
Michael Bennett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Bennett', 18)}}的其他基金
BLOCKING NEGATIVE SIGNALS TO NK CELLS TO TREAT LEUKEMIA
阻断 NK 细胞的负信号来治疗白血病
- 批准号:
6376235 - 财政年份:2000
- 资助金额:
$ 3.96万 - 项目类别:
BLOCKING NEGATIVE SIGNALS TO NK CELLS TO TREAT LEUKEMIA
阻断 NK 细胞的负信号来治疗白血病
- 批准号:
6633105 - 财政年份:2000
- 资助金额:
$ 3.96万 - 项目类别:
BLOCKING NEGATIVE SIGNALS TO NK CELLS TO TREAT LEUKEMIA
阻断 NK 细胞的负信号来治疗白血病
- 批准号:
6131639 - 财政年份:2000
- 资助金额:
$ 3.96万 - 项目类别:
BLOCKING NEGATIVE SIGNALS TO NK CELLS TO TREAT LEUKEMIA
阻断 NK 细胞的负信号来治疗白血病
- 批准号:
6512815 - 财政年份:2000
- 资助金额:
$ 3.96万 - 项目类别:
INTERNATIONAL CONFERENCE ON THE CEROID-LIOPFUSCINOSES
蜡质-脂褐质国际会议
- 批准号:
2723292 - 财政年份:1998
- 资助金额:
$ 3.96万 - 项目类别:
BLOCKING NEGATIVE SIGNALS TO NK CELLS TO TREAT LEUKEMIA
阻断 NK 细胞的负信号来治疗白血病
- 批准号:
2114084 - 财政年份:1996
- 资助金额:
$ 3.96万 - 项目类别:
BLOCKING NEGATIVE SIGNALS TO NK CELLS TO TREAT LEUKEMIA
阻断 NK 细胞的负信号来治疗白血病
- 批准号:
2390914 - 财政年份:1996
- 资助金额:
$ 3.96万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Amnion cell secretome mediated therapy for traumatic brain injury
羊膜细胞分泌组介导的创伤性脑损伤治疗
- 批准号:
10746655 - 财政年份:2023
- 资助金额:
$ 3.96万 - 项目类别:
Development of the waixenicin A pharmacophore as a therapeutic intervention for neonatal hypoxic brain injury
开发 Waixenicin A 药效团作为新生儿缺氧性脑损伤的治疗干预措施
- 批准号:
10577489 - 财政年份:2023
- 资助金额:
$ 3.96万 - 项目类别:
Molecular and neural mechanisms associated with injury and recovery from traumatic brain injury
与创伤性脑损伤的损伤和恢复相关的分子和神经机制
- 批准号:
10693653 - 财政年份:2023
- 资助金额:
$ 3.96万 - 项目类别:
Role of RIPK2 in the neuroinflammatory response to ischemic stroke
RIPK2 在缺血性卒中神经炎症反应中的作用
- 批准号:
10680081 - 财政年份:2023
- 资助金额:
$ 3.96万 - 项目类别:
Molecular control of aberrant adult-born granule cells in epilepsy
癫痫中异常成年颗粒细胞的分子控制
- 批准号:
10737298 - 财政年份:2023
- 资助金额:
$ 3.96万 - 项目类别: