Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
基本信息
- 批准号:10676895
- 负责人:
- 金额:$ 61.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAcute Respiratory Distress SyndromeAddressAdmission activityAdultAgeAutomobile DrivingBiochemicalBiologicalBiological AssayBiological MarkersBlindedBrainBrain InjuriesCOVID-19CaringCerebral EdemaCerebral hemisphere hemorrhageCessation of lifeCharacteristicsChildhoodClinicalClinical ManagementConsultationsCoupledCritical IllnessCritically ill childrenDataData SetDedicationsDeliriumDetectionDevelopmentDiagnosisDiseaseEarly DiagnosisElderlyElectronic Health RecordEncephalopathiesEnrollmentEquipment and supply inventoriesFast Healthcare Interoperability ResourcesFeedsFocus GroupsFriendsFutureGenderHeartHospitalizationHospitalsImmobilizationImpaired cognitionIncidenceInfantInflammatoryInformaticsInfrastructureIntensive Care UnitsIntracranial HemorrhagesKidneyKidney FailureLaboratoriesLinkLiverLiver FailureMachine LearningMalignant NeoplasmsMechanicsModelingMonitorMorbidity - disease rateNeurologicOrganOrgan failurePatient AdmissionPatientsPediatric HospitalsPediatric Intensive Care UnitsPerformancePersonsPharmaceutical PreparationsPhysiologicalPredictive AnalyticsProcessQuality of lifeRaceRiskSamplingSeizuresSepsisSerumStrokeTestingTimeValidationVirus Diseasesbiomarker identificationbiomarker signatureclinical diagnosiscohortdata pipelinedigitalfunctional statusinteroperabilitymachine learning methodneonateneuromuscularneurotropicnew epidemicpoint of carepreventprospectiveprototyperapid detectionside effectspecific biomarkerssupport toolstoolusabilityvector
项目摘要
The silent development and progression of neurologic morbidity, or neuromorbidity, among hospitalized,
critically ill patients represents a newly recognized and emerging epidemic. This includes patients admitted to
intensive care units with primary neurologic diagnoses, those at increased risk based on their underlying
disease (e.g. neurotropic viral infections including COVID19), and those where the development of
neuromorbidity is occult and unexpected. Neuromorbidity associated with critical illness can be caused by
physiologic instability, biochemical derangements, side effects of medications, invasive mechanical support,
immobility, and/or other therapies used to prevent death. It spans the age spectrum from neonates to the
elderly, occurs across gender and race, and is underrecognized in patients with systemic illnesses (e.g. sepsis,
viral infections, and other inflammatory conditions) and critical organ failure (e.g. acute respiratory distress
syndrome, cancer, hepatic and renal failure). In the U.S. the incidence of neuromorbidity ranges from 5-47% in
critically ill children and adults, thus impacting hundreds of thousands of patients annually. Often
neuromorbidity evolves undetected until after clinical manifestations emerge and is irreversible. Neuromorbidity
can strike acutely, e.g. seizures, stroke, intracerebral hemorrhage, cerebral edema, and/or delirium, or in a
more protracted fashion, e.g. neuromuscular weakness and/or cognitive decline, and is often permanent,
endured throughout the remainder of a person’s lifetime. No standard clinical tool exists to identify patients at
risk for neuromorbidity or for real-time neurologic monitoring, in stark contrast to the heart, kidney, liver, and
many other organs.
To fill this gap and transform the way clinicians detect and monitor for evolving brain injury, we developed
a Bio-digital Rapid Alert to Identify Neuromorbidity (BRAIN) that continuously feeds electronic health record
(EHR) variables in 9 clinical domains (A through I) into proprietary informatics and machine learning platforms.
Prototype BRAIN A-I models are robust and predict clinician concern for neuromorbidity before clinical action is
taken. To link biological and digital signatures, we have defined a panel of serum biomarkers that can identify
time-documented neuromorbidity before clinical detection. Using a “Bayesian to Bedside” approach, we have
created a live data pipeline bridging the EHR and a dedicated host server, establishing the infrastructure
necessary to operationalize BRAIN A-I as an embedded predictive analytic and decision-driving support tool.
In this proposal we will test the hypothesis that digital signatures in the EHR coupled with brain-specific
biomarkers can rapidly detect neuromorbidity in critically ill children. Successful deployment of interoperable,
24/7 point-of-care neurologic monitoring for early detection of neuromorbidity would represent a breakthrough
for the clinical management of critically ill patients.
住院患者中神经系统发病率或神经病态的悄然发展和进展
危重病人是一种新发现的流行病,其中包括住院病人。
具有初级神经系统诊断的重症监护病房,那些根据其潜在风险增加的人
疾病(例如,包括新冠病毒在内的嗜神经病毒感染),以及那些发展为
神经发病是隐匿性和意外的 与危重疾病相关的神经发病可能是由以下原因引起的。
生理不稳定、生化紊乱、药物副作用、侵入性机械支持、
不动和/或其他用于预防死亡的疗法涵盖从新生儿到成年人的年龄范围。
老年人,跨性别和种族都会发生,并且在患有全身性疾病(例如脓毒症、
病毒感染和其他炎症)和严重器官衰竭(例如急性呼吸窘迫)
在美国,神经病的发病率在 5-47% 之间。
危重儿童和成人,因此每年影响数十万患者。
神经疾病的发展直到临床表现出现后才被发现,并且是不可逆转的。
可能会急性发作,例如癫痫发作、中风、脑出血、脑水肿和/或谵妄,或
更持久的时尚,例如神经肌肉无力和/或认知能力下降,并且通常是永久性的,
没有标准的临床工具可以识别患者的一生。
神经发病或实时神经系统监测的风险,与心脏、肾脏、肝脏和心脏形成鲜明对比
许多其他器官。
为了填补这一空白并改变更快检测和监测不断发展的脑损伤的方式,我们开发了
持续提供电子健康记录的生物数字快速识别神经病态警报 (BRAIN)
(EHR) 9 个临床领域(A 到 I)的变量进入专有信息学和机器学习平台。
原型 BRAIN A-I 模型非常稳健,可以在采取临床行动之前预测临床医生对神经疾病的担忧
为了将生物特征和数字特征联系起来,我们定义了一组可以识别的血清生物标志物。
使用“贝叶斯到床边”方法,我们在临床检测之前记录了时间记录的神经发病率。
创建了一个连接 EHR 和专用主机服务器的实时数据管道,建立了基础设施
将 BRAIN A-I 作为嵌入式预测分析和决策驱动支持工具进行操作是必要的。
在本提案中,我们将测试以下假设:电子病历中的数字签名与大脑特定的数据相结合。
生物标志物可以快速检测危重儿童的神经病态,成功部署可互操作的、
用于早期发现神经疾病的 24/7 护理点神经系统监测将是一项突破
用于危重病人的临床管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alicia K Au其他文献
Alicia K Au的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alicia K Au', 18)}}的其他基金
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10456945 - 财政年份:2021
- 资助金额:
$ 61.7万 - 项目类别:
Bio-digital Rapid Alert to Identify Neuromorbidity
识别神经疾病的生物数字快速警报
- 批准号:
10313294 - 财政年份:2021
- 资助金额:
$ 61.7万 - 项目类别:
Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
- 批准号:
10178124 - 财政年份:2018
- 资助金额:
$ 61.7万 - 项目类别:
Mixed graphical models for the prediction of neurological morbidity in the PICU
用于预测 PICU 神经发病率的混合图形模型
- 批准号:
10437665 - 财政年份:2018
- 资助金额:
$ 61.7万 - 项目类别:
相似国自然基金
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
锌离子转运蛋白SLC39A1在急性呼吸窘迫综合征中的作用和机制
- 批准号:32371177
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
特络细胞源性外泌体经JAK/STAT-miRNA-E2F轴修复肺血管改善急性呼吸窘迫综合征的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
线粒体环形孔道释放ox-mtDNA引起肺泡巨噬细胞焦亡及HMGB1分泌致脓毒症相关急性呼吸窘迫综合征的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
相似海外基金
Combinatorial cytokine-coated macrophages for targeted immunomodulation in acute lung injury
组合细胞因子包被的巨噬细胞用于急性肺损伤的靶向免疫调节
- 批准号:
10648387 - 财政年份:2023
- 资助金额:
$ 61.7万 - 项目类别:
Understanding and targeting fibroblast activation in influenza-triggered lung inflammation and post-viral disease
了解和靶向流感引发的肺部炎症和病毒后疾病中的成纤维细胞激活
- 批准号:
10717809 - 财政年份:2023
- 资助金额:
$ 61.7万 - 项目类别:
MLL1 drives collaborative leukocyte-endothelial cell signaling and thrombosis after coronavirus infection
MLL1在冠状病毒感染后驱动白细胞-内皮细胞信号传导和血栓形成
- 批准号:
10748433 - 财政年份:2023
- 资助金额:
$ 61.7万 - 项目类别:
LOX-1 as a protective countermeasure in response to lung infection
LOX-1 作为应对肺部感染的保护性对策
- 批准号:
10677924 - 财政年份:2023
- 资助金额:
$ 61.7万 - 项目类别:
The Intermountain West-Atlantic Center (InterACT) for the APS Phenotyping Consortium
APS 表型联盟的山间西大西洋中心 (InterACT)
- 批准号:
10649343 - 财政年份:2023
- 资助金额:
$ 61.7万 - 项目类别: