Molecular mechanisms of bacterial immune signaling through DNA damage
通过 DNA 损伤产生细菌免疫信号的分子机制
基本信息
- 批准号:10677417
- 负责人:
- 金额:$ 4.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAntiviral ResponseBacteriaBacterial Antibiotic ResistanceBacterial GenomeBacterial InfectionsBacteriophagesBindingBiochemicalBioinformaticsBiological AssayCellsCellular StressClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADNA BindingDNA DamageDNA RepairDNA Restriction-Modification EnzymesEscherichia coliGene ExpressionGenerationsGenetic TranscriptionGenomeImmune TargetingImmune responseImmune signalingImmune systemIndividualInfectionIslandLigand BindingLigandsMainstreamingMediatingModelingModificationMolecularMolecular ConformationMutationNucleic AcidsOligonucleotidesOrangesPeriodicityPlasmidsPopulationProphagesProteinsRegulationResolutionRoleSignal TransductionStructureSystemTestingTranscriptional RegulationViralVirusWorkX-Ray Crystallographyantiviral immunitybioinformatics toolexperimental studyfightingpathogenpressurerational designresponsesensorsmall moleculesynergismtranscription factor
项目摘要
PROJECT SUMMARY
Molecular mechanisms of bacterial immune signaling through DNA damage
The availability of tens of thousands of bacterial genome sequences, plus new bioinformatics tools and
new understanding of bacterial genome organization, has enabled the discovery and experimental
characterization of dozens of anti-bacteriophage and anti-plasmid defense systems in bacteria. Since a typical
bacterial genome encodes 3-6 distinct defense systems, a key question is whether and how these systems can
coordinate their activities to synergistically fight an infection. In prior work on the widespread and diverse
CBASS (Cyclic oligonucleotide-Based Anti-phage Signaling System) defense systems, we identified two
transcriptional regulators – CapW and the two-protein CapH+CapP system – that boost CBASS gene
expression in response to DNA damage. Together, CapW and CapH+CapP are associated with ~10% of
CBASS systems, and are also found adjacent to a broad range of known and predicted bacterial defense
systems including Pycsar, DISARM, and BREX. These findings suggest that CapW and CapH+CapP may
mediate activation of antiviral defense in response to a universal signal of cell stress, DNA damage. Here, I will
first identify the small-molecule or nucleic acid ligand that binds and activates CapW upon DNA damage. I will
combine biochemical assays for CapW binding to both its target DNA and its ligand with x-ray crystallography
to characterize the conformational changes imposed by the ligand to control CapW-DNA binding. This work will
establish a mechanism for CapW, a widespread bacterial transcription factor. Next, I will test the idea that
CapW and CapH+CapP mediate cooperation between antiviral defense systems by sensing DNA damage.
Specifically, we hypothesize that DNA-targeting immune systems like restriction-modification and CRISPR-Cas
create DNA damage that is sensed by CapW or CapH+CapP to activate a secondary defense system (CBASS
or others) to reinforce the defensive response. I will systematically test this model by infecting cells encoding
both a restriction-modification system and a CapW- or CapH+CapP-associated CBASS system to determine if
the combination of these systems yields synergistic antiviral immunity. Additionally, I will test whether DNA
damage sensing plays a role in defense-system synergy, using structure-based mutations to either CapW or
CapP that eliminate DNA damage sensing. Together, these experiments will reveal the molecular mechanism
of CapW, and the role of DNA damage sensors in mediating synergy in bacterial defense systems. The
findings have the potential to establish a new paradigm in which DNA targeting defense systems constitute a
first line of antiviral defense, and DNA damage-activated systems constitute a second line of defense with
orthogonal mechanisms. Thus, instead of viewing bacterial defense systems in isolation, this work will
establish how they cooperate to compose a comprehensive bacterial “immune system”.
项目概要
通过 DNA 损伤产生细菌免疫信号的分子机制
数万个细菌基因组序列的可用性,加上新的生物信息学工具和
对细菌基因组组织的新认识,使得发现和实验成为可能
表征细菌中数十种抗噬菌体和抗质粒防御系统。
细菌基因组编码 3-6 个不同的防御系统,一个关键问题是这些系统是否以及如何能够
在先前针对广泛且多样化的感染的工作中,协调他们的活动以协同对抗感染。
CBASS(基于环状寡核苷酸的抗噬菌体信号系统)防御系统,我们确定了两个
转录调节因子 – CapW 和双蛋白 CapH+CapP 系统 – 增强 CBASS 基因
CapW 和 CapH+CapP 共同与 DNA 损伤反应的表达相关,约 10% 是相关的。
CBASS 系统,并且还被发现与广泛的已知和预测的细菌防御系统相邻
包括 Pycsar、DISARM 和 BREX 在内的系统这些发现表明 CapW 和 CapH+CapP 可能。
介导抗病毒防御的激活,以响应细胞应激的普遍信号,即 DNA 损伤。
首先确定在 DNA 损伤时结合并激活 CapW 的小分子或核酸配体。
将 CapW 与其靶 DNA 及其配体结合的生化测定与 X 射线晶体学相结合
表征配体所施加的构象变化以控制 CapW-DNA 结合。
建立 CapW(一种广泛存在的细菌转录因子)的机制 接下来,我将测试这个想法。
CapW 和 CapH+CapP 通过感知 DNA 损伤来介导抗病毒防御系统之间的合作。
具体来说,我们追求 DNA 靶向免疫系统,如限制性修饰和 CRISPR-Cas
产生由 CapW 或 CapH+CapP 感知的 DNA 损伤,以激活二级防御系统 (CBASS
或其他)来强化防御反应,我将通过感染编码细胞来系统地测试这个模型。
限制修改系统和 CapW 或 CapH+CapP 相关的 CBASS 系统,以确定是否
另外,这些系统的组合会产生协同抗病毒免疫力,我将测试DNA是否如此。
损伤感知在防御系统协同作用中发挥着重要作用,使用基于结构的突变来检测 CapW 或
CapP 消除了 DNA 损伤传感,这些实验将共同揭示分子机制。
CapW 的作用,以及 DNA 损伤传感器在介导细菌防御系统协同作用中的作用。
研究结果有可能建立一个新的范式,其中 DNA 靶向防御系统构成了
抗病毒防御的第一道防线,DNA损伤激活系统构成第二道防线
因此,这项工作不是孤立地观察细菌防御系统。
确定它们如何合作组成全面的细菌“免疫系统”。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chelsea Lee Blankenchip其他文献
Chelsea Lee Blankenchip的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
溶质载体SLC38A10调控抗病毒天然免疫反应的作用及分子机制
- 批准号:32370926
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
RNA分子SNORA31结合cGAS并调控小胶质细胞的抗病毒天然免疫反应的作用与机制研究
- 批准号:82301981
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于HEV介导炎症反应与干扰素通路信号交互机制的抗病毒策略研究
- 批准号:82370610
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
鲫TRAF6负调控干扰素抗病毒免疫反应的分子机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
去乙酰化酶SIRT1在抗病毒固有免疫反应中的调控作用及相关机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
MultiOMICS mechanistic identification of predictors of HIV DNA decay, restoration of immune homeostasis and HIV specific immunity in PWH with cancer receiving Immune check point therapy
接受免疫检查点治疗的癌症患者中 HIV DNA 衰变、免疫稳态恢复和 HIV 特异性免疫的预测因子的多组学机制鉴定
- 批准号:
10731665 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Regulation and Function of Oral Resident Memory T Cells
口腔驻留记忆 T 细胞的调节和功能
- 批准号:
10896496 - 财政年份:2023
- 资助金额:
$ 4.03万 - 项目类别:
Trained immunity in the prevention of viral myocarditis and pancreatitis
训练有素的免疫力预防病毒性心肌炎和胰腺炎
- 批准号:
10515667 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别: