Characterization of bacterial enzymes that depolymerize fungal cell wall polysaccharides
解聚真菌细胞壁多糖的细菌酶的表征
基本信息
- 批准号:10675071
- 负责人:
- 金额:$ 31.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAntifungal AgentsAntifungal TherapyAspergillus nidulansBacteriaBasic ScienceBiological AssayBiomassCell WallCellsCellvibrioChitinChitinaseComplexComplex MixturesContainmentCoupledDataDevelopmentDiseaseDrug resistanceEnsureEnzymatic BiochemistryEnzymesExcisionFungal ComponentsFungi ModelFutureGene DeletionGene ExpressionGenesGlucansGoalsGrowthHealthHumanIn VitroIncidenceIndividualInfectionKineticsKnowledgeMeasurementMedicalMedical DeviceMethodsMicrobial BiofilmsMissionModelingMoldsMutationMycosesNatureNutrientOintmentsOutcomePatternPharmaceutical PreparationsPharmacotherapyPhenotypePolysaccharidesPropertyProteinsProteomeProteomicsPublic HealthRegulationResearchResearch Project GrantsResistanceSaccharomyces cerevisiaeSourceStructureSubstrate SpecificitySystemSystems BiologyTechniquesTestingTherapeuticTimeTreatment CostUnited States National Institutes of HealthYeastscandidate identificationcombatdepolymerizationdesignfitnessfitness testfungusgene complementationgene productgenetic analysisin vivoinnovationinsightmortalitymultiple omicsmutantnovelnovel strategiespathogenic funguspoor health outcomepreventprotein expressionrational designsynergismtranscriptometranscriptomics
项目摘要
PROJECT SUMMARY
Fungal infections significantly impact human health, both in terms of mortality and treatment cost. While anti-
fungal drugs have been the leading therapy for fungal infections, there is an increasing incidence of resistant
fungal infections that are difficult to treat. An alternative approach to disrupting fungal cell wall synthesis with
drugs is the active degradation of fungal cell wall polysaccharides. However, there is a substantial knowledge
gap in regards to the requirements for effective fungal cell wall degradation. This shortfall prevents the
development of new anti-fungal therapies that could be used alone or in combination with current drug
treatments. The long-term goal of this project is to develop mechanistic understanding of polysaccharide
deconstruction to produce medically relevant enzymes. The objective of this particular proposal is focused on
identifying and characterizing the mechanisms for the degradation of fungal cell wall polysaccharides by the
bacterium Cellvibrio japonicus. Our central hypothesis is that a coordinated suite of enzymes is required to
effectively degrade the glucan and chitin components of fungal cell walls. We will test this hypothesis with three
Specific Aims: (1) Multiomic analyses during degradation of fungal cell wall polysaccharides, (2) Functional
analysis of genes that encode enzymes essential for fungal cell wall deconstruction, and (3) Quantitative
enzymology of fungal cell wall degrading enzymes. For the first Aim, we will use established transcriptomic and
proteomic methods to decipher the complex gene and protein expression patterns of C. japonicus when actively
degrading the fungal cell walls of Aspergillus nidulans and Saccharomyces cerevisiae. Novel targets will be
placed in a functional context by subsequent genetic analysis. The second Aim will determine the contribution of
individual gene products for the deconstruction of fungal cell walls. We have established both transposon and
high-throughput targeted mutational approaches to identify and analyze genes that are essential for
polysaccharide degradation in C. japonicus. We will test the fitness of mutant strains lacking these genes with
growth assays using insoluble fungal cell wall polysaccharides and intact fungal biomass. For the third Aim, we
will purify and characterize enzymes capable of degrading fungal cell wall polysaccharides to determine their
substrate specificity, kinetic parameters, and to assess enzyme synergy. The use of fungal biomass as a
substrate will allow us to determine what enzyme combinations are maximally effective at deconstructing intact
fungal cell walls. These approaches are innovative because we use a bacterium that has a robust polysaccharide
degrading capability coupled with a novel screen that uses intact fungal biomass, which includes filamentous
fungi and yeasts. This project is significant because it will characterize enzymes with medically-relevant
properties, give mechanistic insight into the requirements for the effective disruption of fungal cell walls, and
generate a powerful system for the discovery of enzymes that have anti-fungal potential.
项目摘要
在死亡率和治疗成本方面,真菌感染都会显着影响人类健康。而反 -
真菌药物一直是真菌感染的领先疗法,耐药性越来越多
很难治疗的真菌感染。与使用真菌细胞壁合成合成的另一种方法
药物是真菌细胞壁多糖的主动降解。但是,有很大的知识
关于有效真菌细胞壁降解的要求的差距。此不足阻止了
开发可单独使用或与当前药物结合使用的新抗真菌疗法
治疗。该项目的长期目标是发展对多糖的机械理解
解构以产生医学相关的酶。该特定提议的目的集中在
识别和表征通过真菌细胞壁多糖降解的机制
细菌细菌japonicus。我们的中心假设是需要协调的酶套件
有效地降解真菌细胞壁的葡聚糖和几丁质成分。我们将用三个
具体目的:(1)真菌细胞壁多糖降解期间的多素分析,(2)功能
分析编码对真菌细胞壁解构必不可少的酶的基因,以及(3)定量
真菌细胞壁降解酶的酶学。为了第一个目标,我们将使用已建立的转录组和
蛋白质组学方法是在主动地破译Japonicus的复杂基因和蛋白质表达模式
降解曲霉和酿酒酵母的真菌细胞壁。新颖的目标将是
通过随后的遗传分析放置在功能环境中。第二个目标将决定
用于解构真菌细胞壁的单个基因产物。我们已经建立了转座子和
高通量的靶向突变方法,以识别和分析对于对
Japonicus C. japonicus中的多糖降解。我们将测试缺乏这些基因的突变菌株的适应性
使用不溶性真菌细胞壁多糖和完整的真菌生物量的生长测定。对于第三个目标,我们
将纯化并表征能够降解真菌细胞壁多糖的酶
底物特异性,动力学参数并评估酶协同作用。使用真菌生物量作为
底物将使我们能够确定哪些酶组合在完整的解构上具有最大有效
真菌细胞壁。这些方法具有创新性,因为我们使用具有强大多糖的细菌
降解功能以及使用完整真菌生物量的新颖屏幕,其中包括丝状
真菌和酵母。该项目很重要,因为它将表征与医学相关的酶
属性,对有效破坏真菌细胞壁有效破坏的要求进行机械洞察力,以及
生成一个有力的系统,以发现具有抗真实潜力的酶。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Microbe Profile: Cellvibrio japonicus: living the sweet life via biomass break-down.
微生物概况:日本细胞弧菌:通过生物量分解过上甜蜜的生活。
- DOI:10.1099/mic.0.001450
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Gardner,JeffreyG
- 通讯作者:Gardner,JeffreyG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Gardner其他文献
Jeffrey Gardner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
典型唑类抗真菌剂在斑马鱼中的富集代谢规律及其性腺激素干扰效应研究
- 批准号:21507163
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
群体感应系统阻遏抗真菌剂藤黄绿菌素生物合成的分子机制
- 批准号:31270083
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
抗真菌剂藤黄绿菌素生物合成自诱导的分子机理研究
- 批准号:30800009
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The Impact of SARS-CoV-2 Immune Dysregulation on Antifungal Immunity
SARS-CoV-2 免疫失调对抗真菌免疫的影响
- 批准号:
10658355 - 财政年份:2023
- 资助金额:
$ 31.76万 - 项目类别:
Development of M-Drive: A recyclable Mucor-optimized CAS9 gene-drive system cable of multi-target gene editing
开发M-Drive:可回收的多靶点基因编辑的毛霉优化CAS9基因驱动系统电缆
- 批准号:
10727359 - 财政年份:2023
- 资助金额:
$ 31.76万 - 项目类别:
Systems Epigenomics of Persistent Bloodstream Infection
持续性血流感染的系统表观基因组学
- 批准号:
10551703 - 财政年份:2023
- 资助金额:
$ 31.76万 - 项目类别:
Targeting the casein kinase 1 (CK1)-like kinase Yck2 in fungal pathogenesis
在真菌发病机制中靶向酪蛋白激酶 1 (CK1) 样激酶 Yck2
- 批准号:
10595027 - 财政年份:2022
- 资助金额:
$ 31.76万 - 项目类别:
Investigating antigen-driven clonal proliferation to target HIV-1 persistence
研究抗原驱动的克隆增殖以靶向 HIV-1 持久性
- 批准号:
10693343 - 财政年份:2021
- 资助金额:
$ 31.76万 - 项目类别: