Investigating the Response of CNS Neurons to Electric and Magnetic Stimulation
研究中枢神经系统神经元对电和磁刺激的反应
基本信息
- 批准号:10673590
- 负责人:
- 金额:$ 59.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAnatomyAxonBiophysicsBlindedCalibrationCell membraneCell modelCell physiologyCellsCellular MorphologyCommunitiesComplexComputer ModelsDendritesDevelopmentDevicesDistalEffectivenessElectric StimulationFire - disastersGerm CellsGoalsImplantIndividualIon ChannelIon Channel GatingKnowledgeLocationMacular degenerationMagnetismMapsMeasurementMeasuresMicroelectrodesModelingMorphologyMotor CortexMusNeocortexNeuronsOryctolagus cuniculusPerformancePhysiologicalPhysiologyPopulationPrefrontal CortexProcessPropertyProsthesisRecommendationResearchRetinaRetinal DegenerationRetinal Ganglion CellsRetinitis PigmentosaSeriesShapesSignal TransductionSodium ChannelStimulusTestingTissuesTrainingTranslationsVisionWorkarea striatacell typedensityeffectiveness evaluationelectric fieldexperimental studyhippocampal pyramidal neuronimplantable deviceimprovedluminanceneocorticalnervous system disorderneuralneural patterningneural prosthesisneuronal cell bodyneurotransmissionnext generationnonhuman primatenovelpredicting responsepredictive modelingresponseretinal neuronretinal prosthesisvoltage
项目摘要
Our long-term goals are to better understand the response of neurons to artificial stimulation, and, to use this
knowledge to develop new and more effective strategies for stimulating non- or improperly-functioning neurons
of the CNS. The development of models that comprehensively and accurately predict the response of neural
populations to electric stimulation has proven challenging, in part because of the significant morphological
differences that can exist even between nearby cells, and, a lack of understanding as to how such differences
shape each cell’s response to stimulation. A comprehensive understanding of the activation process would not
only allow the development of models that would more accurately predict population responses but would also
support the development of more effective stimulation strategies. In the retina for example, cells that respond
to increases in luminance (ON cells) typically lie adjacent to cells that respond to luminance decreases (OFF
cells); the two do not typically fire action potentials in response to the same stimulus and therefore, a
prosthesis that activates both simultaneously creates a pattern of neural activity that is non-physiological. Mis-
match between natural and artificial signals limits the quality of vision that can be obtained by a retinal
prosthesis and similarly limits the effectiveness of other CNS-based prostheses as well. Here, we propose to
comprehensively study how individual cellular properties each influence the response to artificial stimulation.
Our approach will be to map sensitivity across a cell, and then compare physiological maps to cellular
morphology, including the expression of voltage-gated ion channels; this will allow us to identify the specific
cellular regions that have the strongest influence on responsivity. Computational models based on our precise
anatomical measurements can be calibrated from the physiological maps to optimize the accuracy of the
models; they will also help to unequivocally identify the relative sensitivity of individual features. Comparison of
multiple cells within the same cell type will help to further identify the features that have the strongest influence
on threshold and repeating the process across multiple cell types, different CNS regions and multiple species
will lead to a comprehensive understanding of the activation process, along with the concurrent development of
models that accurately predict the response of large populations of neurons to many different forms of
stimulation. The inclusion of non-human primate tissue in the study will enhance the translation value of our
findings. Validated models will be used to study responses to more advanced stimulating strategies, e.g. the
high-rate stimulus trains that produce selective activation in ON vs. OFF cell types of the retina, and, the use of
magnetic stimulation from implantable micro-coils to selectively target pyramidal neurons in the cortex while
avoiding nearby passing axons from distal neurons. Models will be further enhanced from each new set of
experiments and the comprehensive set (of models) will be made widely available to the research community.
我们的长期目标是更好地了解神经元对人工刺激的反应,并使用它
知识以制定新的,更有效的策略来刺激非功能不适或功能不佳的神经元
中枢神经系统。全面,准确预测神经响应的模型的开发
对电刺激的种群已被证明是挑战,部分原因是形态学显着
即使在附近的细胞之间也可能存在的差异,并且缺乏对这种差异的理解
塑造每个细胞对刺激的反应。对激活过程的全面了解不会
仅允许开发更准确地预测人口响应的模型,但也将
支持开发更有效的刺激策略。例如,在视网膜中,响应的细胞
为了增加亮度(在细胞上)通常位于响应亮度下降的细胞附近(关闭
细胞);两者通常不会针对同一刺激发射动作电位,因此,
同时激活两者的假体会产生一种非生理学的神经元活性模式。误
自然信号和人造信号之间的匹配限制了视网膜可以获得的视觉质量
假体和类似地限制了其他基于CNS的假体的有效性。在这里,我们建议
全面研究单个细胞特性如何影响对人工刺激的反应。
我们的方法是绘制跨单元的灵敏度,然后将物理图与细胞进行比较
形态,包括电压门控离子通道的表达;这将使我们能够确定特定的
对响应性有强大影响的细胞区域。基于我们的精确度的计算模型
可以从物理图校准解剖测量,以优化
模型;它们还将有助于明确识别单个特征的相对灵敏度。比较
同一细胞类型中的多个单元将有助于进一步识别具有更强影响的特征
阈值并重复多种细胞类型,不同的CNS区域和多种物种的过程
将导致对激活过程的全面理解,并同时发展
准确预测大量神经元对许多不同形式的响应的模型
刺激。在研究中纳入非人类灵长类组织将增强我们的翻译值
发现。经过验证的模型将用于研究对更先进的刺激策略的反应,例如
高速刺激火车在视网膜的细胞类型中产生选择性激活,并使用
从可植入的微型机芯中进行磁刺激,以选择性地靶向皮质中的锥体神经元
避免在远端神经元的附近通过轴突。每组新组将进一步增强模型
实验和(模型)的全面集合将为研究社区广泛使用。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spiking Characteristics of Network-Mediated Responses Arising in Direction-Selective Ganglion Cells of Rabbit and Mouse Retinas to Electric Stimulation for Retinal Prostheses.
- DOI:10.1109/tnsre.2021.3128878
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Otgondemberel Y;Roh H;Fried SI;Im M
- 通讯作者:Im M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shelley Fried其他文献
Shelley Fried的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shelley Fried', 18)}}的其他基金
Functional analysis of an LGN-based visual prosthesis
基于 LGN 的视觉假体的功能分析
- 批准号:
10582766 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别:
Optimization of micro-coil arrays for precise stimulation of visual cortex
优化微线圈阵列以精确刺激视觉皮层
- 批准号:
10362524 - 财政年份:2018
- 资助金额:
$ 59.83万 - 项目类别:
HRS targeting of ON and OFF ganglion cells
HRS 靶向 ON 和 OFF 神经节细胞
- 批准号:
9113664 - 财政年份:2013
- 资助金额:
$ 59.83万 - 项目类别:
HRS targeting of ON and OFF ganglion cells
HRS 靶向 ON 和 OFF 神经节细胞
- 批准号:
8561456 - 财政年份:2013
- 资助金额:
$ 59.83万 - 项目类别:
HRS targeting of ON and OFF ganglion cells
HRS 靶向 ON 和 OFF 神经节细胞
- 批准号:
8906871 - 财政年份:2013
- 资助金额:
$ 59.83万 - 项目类别:
Informing the Sub-Retinal Approach to Stimualation of the Retina.
告知视网膜下刺激视网膜的方法。
- 批准号:
8083729 - 财政年份:2011
- 资助金额:
$ 59.83万 - 项目类别:
Informing the Sub-Retinal Approach to Stimualation of the Retina.
告知视网膜下刺激视网膜的方法。
- 批准号:
8240901 - 财政年份:2011
- 资助金额:
$ 59.83万 - 项目类别:
Informing the Sub-Retinal Approach to Stimualation of the Retina.
告知视网膜下刺激视网膜的方法。
- 批准号:
8926963 - 财政年份:2011
- 资助金额:
$ 59.83万 - 项目类别:
The mechanism by which electric stimulation activates retinal neurons
电刺激激活视网膜神经元的机制
- 批准号:
8599463 - 财政年份:2010
- 资助金额:
$ 59.83万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:82201271
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:32201547
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Charge-Based Brain Modeling Engine with Boundary Element Fast Multipole Method
采用边界元快速多极子法的基于电荷的脑建模引擎
- 批准号:
10735946 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别:
Cellular and circuit function of Ndnf-expressing interneurons in a mouse model of a neurodevelopmental disorder
神经发育障碍小鼠模型中表达 Ndnf 的中间神经元的细胞和回路功能
- 批准号:
10678812 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别:
Maintaining opioid analgesia and preventing addiction with hypocretin antagonism
通过下丘脑分泌素拮抗作用维持阿片类药物镇痛并预防成瘾
- 批准号:
10713175 - 财政年份:2023
- 资助金额:
$ 59.83万 - 项目类别: