Development of Drugs Acting at Adenosine Receptors

作用于腺苷受体的药物的开发

基本信息

项目摘要

Our laboratory has been one of the most active sources of new AR ligands that have therapeutic potential, and we are careful to cover promising discoveries with patent applications to safeguard the interest of public health and to facilitate translational medicine. Furthermore, we have designed and synthesized many ligands that are used widely in research. Synthetic selective ligands that either mimic the action of adenosine (i.e. agonists) in a fashion specific at a single subtype, or suppress it (i.e. antagonists), can be applied with great benefit in models of disease states, and therefore such agents are being explored as potential pharmaceuticals. For example, in the brain area for movement control (striatum), natural adenosine acting at postsynaptic A2A receptors opposes dopamine effects. In Parkinsons Disease, one would like to block this receptor to boost the dopaminergic signaling. This approach of using a selective AR antagonist to benefit patients suffering from a neurodegenerative disease is currently the focus of clinical trials. On the other hand, AR agonists are more applicable to treating other chronic diseases, e.g. in inflammatory diseases and cardioprotection. Thus, we are constantly searching for the most viable disease targets and translational opportunities for our technology. Our collaborations include studies of the role of ARs in the central nervous system, inflammatory/immune system, cardiovascular system, skeletal muscle, and other systems throughout the body. A structural understanding of the molecular recognition and activation of ARs is an important component of our studies that leads to novel ligands. The more that is known about the 3-dimensional structure of the target receptor, the easier it is to design appropriate ligands. In that regard, we have made significant advances in the approaches to structure-based discovery of small molecular ligands of ARs. The rational design of AR ligands was greatly advanced by the recent elucidation of both the agonist-bound (activated) and antagonist-bound (inactive) states of the A2AAR. We have collaborated for X-ray crystallography of membrane-bound proteins with the lab of Prof. Ray Stevens of the Scripps Research Inst., to report the first X-ray structure of an agonist-bound A2AAR. We are now using this structure advantageously for in silico screening to discover new chemically diverse ligands and to modify existing ligands in ways made possible only through a detailed understanding of molecular recognition and activation of the receptor. This computerized process to discover new potential pharmaceuticals still requires chemical synthesis of target compounds to validate the structural hypotheses. We also collaborate with researchers using nuclear magnetic resonance to follow the signaling path within the A2A AR. Our novel selective A3AR agonists and antagonists containing a methanocarba (bicyclo3.1.0hexane) ribose-ring substitution constrained in the receptor-preferred North (N) conformation have enhanced pharmacological profiles. Also, at the A1AR, (N)-methanocarba nucleosides were truncated to eliminate 5-CH2OH with partial or full retention of agonism. Truncated derivatives have more drug-like physical properties; this approach is appealing for preclinical development of nucleoside analogues. Our ongoing program to develop selective A3AR agonists has resulted in advanced clinical trials of two nucleosides. Therapeutic interests related to selective ligands for the A3AR are anti-inflammatory, anti-ischemic (e.g. in the heart, brain, lungs, and skeletal muscle) and anticancer, by molecular mechanisms that entail modulation of the Wnt and the NF-kB signal transduction pathways. The A3AR is overexpressed in inflammatory and cancer cells, while low expression is found in normal cells, rendering the A3AR as a potential therapeutic target. Currently, A3AR agonists discovered in our lab (IB-MECA and Cl-IB-MECA) are already in advanced clinical trials. Another AR agonist discovered in our lab, MRS4322, recently entered a clinical trial for stroke. We are studying the inhibition of ABC transporters by A3 agonists and synthesizing molecules that are selective for that action. We designed a masked, photocleavable derivative of A3 agonist MRS5698 that can be used as a light-activated prodrug for skin conditions. When administered systemically, it was protective in a mouse model of IL-23 induced psoriasis, but only when the lesion area was irradiated with blue light. This is one of the first examples of light-directed delivery of a potent GPCR ligand selectively to the skin to act as an anti-inflammatory agent. Sterically constrained ((N)-methanocarba) adenosine derivatives were nanomolar full agonists of the A3AR and highly selective (>3000-fold). Combined 2-arylethynyl-N6-3-chlorobenzyl substitutions preserved A3AR affinity/selectivity (e.g., 3,4-difluorophenylethynyl full agonist MRS5698). Receptor docking identified a large, mainly hydrophobic arylethynyl binding region and a predicted helical rearrangement requiring an agonist-specific outward displacement of TM2 resembling opsin. Thus, the X-ray structure of related A2AAR is useful in guiding the design of new A3AR agonists. In collaboration with Daniela Salvemini, we have shown encouraging protective activity of A3AR agonists in models of chronic neuropathic pain, including visceral pain. We use phenotypic in vivo screening for our new analogues. A3AR agonists suppress or prevent the development of chronic neuropathic pain in mice following chronic constriction injury or cancer chemotherapeutic agents (by both central and peripheral mechanisms). Highly selective A3 agonists MRS5698 and MRS5980 were more potent and efficacious than morphine. If used therapeutically, A3 agonists could facilitate the life-saving use of cancer chemotherapy, which often has to be limited or discontinued because of severe side effects such as pain. A3 agonists in combination with opioids reduce opioid side effects to tolerance, withdrawal and opioid-induced hyperalgesia. Another promising application of AR ligands is the use of A3AR antagonists for topical application in the treatment of glaucoma. Certain A3AR antagonists from our lab and outside collaborations are licensed for development as antiglaucoma agents. Blocking A2A and or A2B receptors with antagonists is being explored to boost cancer immunotherapy. A means of lowering adenosine in the tumor microenvironment is to inhibit the enzyme CD73, and we have discovered novel nucleotide inhibitors of CD73. We have discovered positive allosteric modulators (PAMs) of the A3AR such as imidazoquinolinamines to modulate the actions of endogenous adenosine, potentially with fewer side effects than directly acting orthosteric agonists. The objective was to magnify the beneficial effects of the endogenous adenosine released during stress conditions. These effects of the PAMs would be event-specific within the body, i.e. the PAM would have no biological effect on its own unless adenosine was locally elevated. The site on the receptor for PAM binding is being explored in collaboration with John Auchampach (Med. Coll, Wisconsin). A1 agonists that act selectively in the brain are sought as cerebroprotective and anticonvulsant agents. Most known A1 receptor agonists display unacceptable side effects due to their peripheral action, such as alteration of heart rate and blood pressure. We have recently discovered, using a rational design process based on computer modeling, one such drug-like compound (MRS5474) that has the proper physicochemical properties to act at the desired site in the body and is being developed for an IND for depression treatment. We also design and synthesize adenosine kinase inhibitors (to increase adenosine) for studies of their anti-epileptogenic activity.
我们的实验室一直是具有治疗潜力的新AR配体的最活跃来源之一,我们非常小心地涵盖了有前途的发现,并采用专利申请来维护公共卫生的利益并促进转化医学。此外,我们设计和合成了许多在研究中广泛使用的配体。 可以在疾病模型中以极大的益处来应用腺苷(即激动剂)的作用的合成选择性配体(即激动剂)的作用(即激动剂)。例如,在运动控制的大脑区域(纹状体)中,作用于突触后A2A受体的天然腺苷反对多巴胺作用。在帕金森氏病中,人们希望阻止该受体以增强多巴胺能信号传导。目前,使用选择性AR拮抗剂使患有神经退行性疾病的患者受益的方法是临床试验的重点。另一方面,AR激动剂更适用于治疗其他慢性疾病,例如在炎症性疾病和心脏保护作用中。因此,我们一直在寻找最可行的疾病目标和技术的转化机会。我们的合作包括研究AR在中枢神经系统中的作用,炎症/免疫系统,心血管系统,骨骼肌以及整个身体的其他系统。 对ARS的分子识别和激活的结构理解是导致新型配体的研究的重要组成部分。关于目标受体的三维结构的了解越多,设计合适的配体就越容易。在这方面,我们在基于结构的ARS小分子配体的方法中取得了重大进步。由于最近阐明了A2AAR的激动剂结合(激活)和拮抗剂(无效)状态,因此AR配体的合理设计大大提高了。我们已经与Scripps Research Inst。的Ray Stevens教授的实验室合作,为膜结合蛋白的X射线晶体学报道了激动剂结合的A2AAR的第一个X射线结构。现在,我们正在利用这种结构来进行计算机筛选,以发现新的化学多样性配体,并仅通过对分子识别和受体激活的详细理解,以可能使现有的配体进行修改。发现新的潜在药物的计算机化过程仍然需要化学合成目标化合物以验证结构性假设。我们还使用核磁共振与研究人员合作,遵循A2A AR内的信号传导路径。 我们的新型选择性A3AR激动剂和拮抗剂,其中包含甲壳虫(Bicycla3.1.0hexane)核糖环的替代,这些核糖环在受体偏爱的北部(N)构象中的约束具有增强的药理特征。同样,在A1AR,(N) - 甲氧核苷被截断以消除5-CH2OH,并以部分或完全保留激动剂。截短的衍生物具有更多的药物样物理特性。这种方法吸引了核苷类似物的临床前发展。 我们正在进行的开发选择性A3AR激动剂的计划导致了两种核苷的晚期临床试验。与A3AR的选择性配体相关的治疗兴趣是抗炎,抗缺血性(例如,在心脏,大脑,脑,肺和骨骼肌中)和抗癌物,通过分子机制,均带有调节WNT和NF-KB信号转导通道。 A3AR在炎症和癌细胞中过表达,而在正常细胞中发现低表达,使A3AR成为潜在的治疗靶标。目前,在我们的实验室(IB-MECA和CL-IB-MECA)中发现的A3AR激动剂已经在高级临床试验中。在我们的实验室MRS4322中发现的另一位AR激动剂最近进入了中风的临床试验。我们正在研究A3激动剂对ABC转运蛋白的抑制作用,并合成对该作用有选择性的分子。 我们设计了A3激动剂MRS5698的掩盖,可光透明的衍生物,可用作用于皮肤条件的光激活前药。当系统地给药时,它在IL-23诱导的牛皮癣的小鼠模型中具有保护性,但仅当病变区域用蓝光照射时。这是将有效的GPCR配体递送到皮肤的第一个例子之一,以作为抗炎剂。在空间受到限制((n) - 甲氧棒)腺苷衍生物是A3AR的纳摩尔全动力学家,高度选择性(> 3000倍)。合并的2-芳基尼尔N6-3-氯苯取代保留了A3AR亲和力/选择性(例如,3,4-二氟苯基乙基乙基全脂肪剂MRS5698)。受体对接确定了一个主要的,主要是疏水芳基乙基结合区域和一个预测的螺旋重排,需要类似于Opsin的TM2的激动剂特异性的向外位移。因此,相关A2AAR的X射线结构可用于指导新的A3AR激动剂的设计。 在与Daniela Salvemini合作的情况下,我们在慢性神经性疼痛模型(包括内脏疼痛)模型中表现出令人鼓舞的A3AR激动剂的保护性保护性。我们为新类似物使用表型在体内筛选。 A3AR激动剂抑制或防止在慢性收缩损伤或癌症化学治疗剂(通过中央和外围机制)后,小鼠慢性神经性疼痛的发展。高度选择性的A3激动剂MRS5698和MRS5980比吗啡更有效和有效。如果使用治疗,A3激动剂可以促进癌症化学疗法的挽救生命的使用,癌症化学疗法通常由于疼痛等严重的副作用而必须受到限制或中断。 A3激动剂与阿片类药物结合使用,减少了阿片类药物的副作用,从而降低了耐受性,戒断和阿片类药物诱导的痛觉过敏。 AR配体的另一个有希望的应用是使用A3AR拮抗剂用于局部应用青光眼治疗。来自我们实验室和外部合作的某些A3AR拮抗剂被许可作为抗肿瘤剂的开发。正在探索用拮抗剂阻断A2A和A2B受体以增强癌症免疫疗法。降低肿瘤微环境中腺苷的一种手段是抑制酶CD73,我们发现了CD73的新型核苷酸抑制剂。 我们已经发现了A3AR的阳性变构调节剂(PAM),例如咪唑喹啉胺,以调节内源性腺苷的作用,可能比直接起作用的正直激动剂更少。目的是放大在应力条件下释放的内源性腺苷的有益作用。 PAM的这些作用将在体内特定于事件,即,除非腺苷局部升高,否则PAM不会对其自身具有生物学作用。正在与John Auchampach(Med。Coll,Wisconsin)合作探索PAM绑定受体上的地点。 在大脑中选择性起作用的A1激动剂被视为脑保护剂和抗惊厥药。最著名的A1受体激动剂由于其周围作用而表现出不可接受的副作用,例如心率和血压改变。最近,我们发现了基于计算机建模的合理设计过程,一种类似药物的化合物(MRS5474)具有适当的理化特性,可以在体内所需的部位作用,并正在开发用于IND进行抑郁治疗。我们还设计和合成腺苷激酶抑制剂(增加腺苷),以研究其抗癫痫活性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Alan Jacobson其他文献

Kenneth Alan Jacobson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Alan Jacobson', 18)}}的其他基金

Development Of Drugs Acting At Adenosine Receptors
作用于腺苷受体的药物的开发
  • 批准号:
    8349717
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Development Of P2Y Receptor Ligands
P2Y受体配体的开发
  • 批准号:
    7967308
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Development of Drugs Acting at Ion Channels
作用于离子通道的药物的开发
  • 批准号:
    7967317
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Development of Drugs Acting at Ion Channels
作用于离子通道的药物的开发
  • 批准号:
    9549822
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Development of Drugs Acting at Ion Channels
作用于离子通道的药物的开发
  • 批准号:
    10697728
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Computer Modeling of G Protein-Coupled Receptors
G 蛋白偶联受体的计算机建模
  • 批准号:
    10697727
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Development Of P2Y Receptor Ligands
P2Y受体配体的开发
  • 批准号:
    8349716
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Functionalized Congeners Of Bioactive Compounds
生物活性化合物的功能化同系物
  • 批准号:
    7734051
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Computer Modeling of G Protein-Coupled Receptors
G 蛋白偶联受体的计算机建模
  • 批准号:
    7734058
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
Development of Drugs Acting at Ion Channels
作用于离子通道的药物的开发
  • 批准号:
    7734059
  • 财政年份:
  • 资助金额:
    $ 73.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了