Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
基本信息
- 批准号:10699497
- 负责人:
- 金额:$ 56.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-02 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAftercareAntitumor ResponseBiologicalBiological MarkersBiopsyCancer PatientCharacteristicsClinicalClinical TrialsClinical Trials Cooperative GroupComputer Vision SystemsComputersDevelopmentDiagnosisDisease ProgressionEarly identificationEarly treatmentEastern Cooperative Oncology GroupEnvironmentGoalsImmuneImmune checkpoint inhibitorImmune responseImmune systemImmunotherapeutic agentImmunotherapyInflammatoryInstitutionLettersMalignant NeoplasmsMalignant neoplasm of lungMeasurementMolecularMonitorMorphologyMutationNatureNeoadjuvant TherapyNivolumabNoduleNon-Small-Cell Lung CarcinomaNonmetastaticOutcomePD-1/PD-L1PathologicPathway interactionsPatientsPatternPharmaceutical PreparationsPharmacologic SubstancePhasePhenotypePredictive ValuePublishingRadiology SpecialtyReportingResectedScanningShapesSiteTestingTextureTimeTissuesToxic effectTrainingTreatment outcomeTumor BiologyTumor-Infiltrating LymphocytesValidationX-Ray Computed Tomographyanti-PD-1anti-PD-1/PD-L1anti-PD-L1 therapybasecostimaging biomarkerimmunotherapy clinical trialsimmunotherapy trialsindustry partnerinhibitor therapynon-invasive imagingnovelphase III trialpredicting responsepredictive markerprimary endpointprognosticprognostic of survivalprognostic valueprogrammed cell death ligand 1prospectiveradiological imagingradiomicsresponders and non-respondersresponsesuccesssurvival outcomesurvival predictiontooltreatment responsetumortumor behaviortumor heterogeneity
项目摘要
ABSTRACT: In 2019, an estimated 228,150 patients in the US are expected to be diagnosed with non-small cell
lung cancer (NSCLC). A recent landmark development has been the approval of the immune checkpoint
inhibitors (anti-PD-1 and anti-PD-L1) for the treatment of locally advanced and metastatic NSCLC. These
immunotherapy (IO) drugs have an excellent toxicity profile and have the potential to induce durable clinically
meaningful responses. However, only 1 in 5 NSCLC patients treated with IO will have a favorable response.
Unfortunately, the current tissue based biomarker approach to selecting patients for these treatments is sub-
optimal due to the dynamic nature of the interaction of the immune system with the tumor. Given the prohibitive
costs associated with IO (>$200K/year per patient), there is a critical unmet need for predictive biomarkers to
identify which patients will not benefit from IO. Additionally, the current clinical standard to evaluating tumor
response (i.e. RECIST and irRC which evaluate change in tumor size and nodule disappearance) is sub-optimal
in evaluating early clinical benefit from IO drugs. This is due at least in part to the fact that some patients
undergoing IO present apparent disease progression (pseudo-progression) on post-treatment CT scans.
Unlike the standard canon of radiomics (computer extracted features from radiographic scans) that
assess textural or shape patterns, our group has been developing novel computer vision strategies to capture
patterns of peri-tumoral heterogeneity (outside the tumor) and tumor vasculature from CT scans. In N>300
patients, our group has shown that (1) radiomics of vessel tortuosity on baseline, pre-treatment CT for NSCLC
patients undergoing IO were significantly different between responders (less tortuous) and non-responders
(more tortuous), (2) serial changes in these measurements were better predictors of early response to IO
compared to clinical response criteria such as RECIST and irRC and (3) these radiomic attributes were
associated with PD-L1 expression and degree of tumor infiltrating lymphocytes on baseline biopsies. Critically,
these radiomic features predicted response for NSCLC patients treated with 3 different IO agents from 3 sites.
In this project we will further develop vasculature, peri- and intra-tumoral radiomic features for monitoring
and predicting benefit and early response for NSCLC patients treated with IO. We will uniquely train our radiomics
using a set of N>180 resected NSCLC patients treated with first line IO and for whom we will have major
pathologic response (MPR) as primary endpoint. In addition, we will establish the biological underpinnings of
these predictive radiomic signatures by evaluating their association with the morphology, immune landscape
(from biopsies) and molecular pathways of the tumor. In addition we have access to N>700 NSCLC patients
treated on completed clinical trials via our industry partners (Astrazeneca, Bristol-Myers Squibb) for tool
validation. Finally, we will deploy LunIOTx within the ECOG-5163 (INSIGNA) trial (N>600), the first time that
radiomics will be evaluated within a prospective cooperative group clinical trial for IO.
摘要:2019年,预计美国估计有228,150名患者被诊断为非小细胞
肺癌(NSCLC)。最近的具有里程碑意义的开发是获得免疫检查站的批准
用于治疗局部晚期和转移性NSCLC的抑制剂(抗PD-1和抗PD-L1)。这些
免疫疗法(IO)药物具有极好的毒性特征,并且有可能在临床上诱导耐用的毒性
有意义的回应。但是,只有5个接受IO治疗的NSCLC患者中只有1个会有良好的反应。
不幸的是,当前基于组织的生物标志物方法用于选择这些治疗的患者是亚下的
由于免疫系统与肿瘤的相互作用的动态性质,最佳。鉴于过度的
与IO相关的成本(每位患者$ 200k/年),预测性生物标志物的至关重要的需要
确定哪些患者不会从IO中受益。另外,当前评估肿瘤的临床标准
反应(即评估肿瘤大小和结节消失变化的恢复和IRRC)是最佳的
在评估IO药物的早期临床益处时。这至少部分是由于某些患者
在治疗后CT扫描中正在进行IO目前的明显疾病进展(伪产生)。
与标准的放射素学典范(从放射线扫描中提取的计算机提取特征)不同
评估纹理或形状模式,我们的小组一直在制定新颖的计算机视觉策略来捕获
CT扫描的肿瘤周期异质性(肿瘤之外)和肿瘤脉管系统的模式。在n> 300中
患者,我们的小组表明(1)基线上血管曲折的放射素学,NSCLC的预处理CT
反应者(曲折)和无反应者之间的IO患者显着差异
(更曲折),(2)这些测量值的序列变化是对IO早期响应的更好预测指标
与临床反应标准(例如recist和irrc)相比,(3)这些放射性属性是
与基线活检中的PD-L1表达和肿瘤浸润淋巴细胞的程度有关。批判性,
这些放射线特征预测了由3种位点的3种不同IO药物治疗的NSCLC患者的反应。
在这个项目中,我们将进一步开发用于监测的脉管系统,周日和肿瘤内放射线特征
并预测接受IO治疗的NSCLC患者的收益和早期反应。我们将唯一训练我们的放射线学
使用一组n> 180个切除的NSCLC患者,接受了第一行IO治疗,我们将拥有主要
病理反应(MPR)作为主要终点。此外,我们将建立
这些通过评估它们与形态,免疫景观的关联来通过评估它们的预测性放射线标志
(来自活检)和肿瘤的分子途径。另外,我们可以使用N> 700名NSCLC患者
通过我们的行业合作伙伴(Astrazeneca,Bristol-Myers Squibb)进行了完整的临床试验治疗
验证。最后,我们将在ECOG-5163(Insigna)试验(n> 600)中部署Luniotx,这是第一次
将在IO的前瞻性合作组临床试验中评估放射素学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anant Madabhushi其他文献
Anant Madabhushi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anant Madabhushi', 18)}}的其他基金
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10416206 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10589239 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
An AI-enabled Digital Pathology Platform for Multi-Cancer Diagnosis, Prognosis and Prediction of Therapeutic Benefit
基于人工智能的数字病理学平台,用于多种癌症的诊断、预后和治疗效果预测
- 批准号:
10698122 - 财政年份:2022
- 资助金额:
$ 56.7万 - 项目类别:
Novel Radiomics for Predicting Response to Immunotherapy for Lung Cancer
预测肺癌免疫治疗反应的新型放射组学
- 批准号:
10703255 - 财政年份:2021
- 资助金额:
$ 56.7万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10478916 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10246527 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10687842 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10084629 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Computer-Assisted Histologic Evaluation of Cardiac Allograft Rejection
心脏同种异体移植排斥反应的计算机辅助组织学评估
- 批准号:
10471279 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
Artificial Intelligence for Lung Cancer Characterization in HIV affected populations in Uganda and Tanzania
乌干达和坦桑尼亚艾滋病毒感染人群肺癌特征的人工智能
- 批准号:
10267200 - 财政年份:2020
- 资助金额:
$ 56.7万 - 项目类别:
相似国自然基金
面向掌纹识别的安全与隐私保护理论和方法研究
- 批准号:62376211
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微观市场均衡视角下中国长期护理保险试点的福利分析与政策评估
- 批准号:72304093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向康复护理机器人的人机信任度评估方法与任务影响机制研究
- 批准号:62306195
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于生命质量的癌症患者心理行为与护理干预
- 批准号:72381240026
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:国际(地区)合作与交流项目
天然水体中药品和个人护理品间接光降解产物预测模型的构建和应用
- 批准号:42307496
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
In vivo delivery of Ab-directed CRISPR ribonucleoproteins for anal cancer immunotherapy
用于肛门癌免疫治疗的 Ab 定向 CRISPR 核糖核蛋白的体内递送
- 批准号:
10821884 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Engineering the Next Generation of Safer Hsp90 Inhibitors
设计下一代更安全的 Hsp90 抑制剂
- 批准号:
10587304 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Intensive cholesterol-lowering intervention and anti-tumor immunity modeled in prostate cancer
以前列腺癌为模型的强化降胆固醇干预和抗肿瘤免疫
- 批准号:
10802975 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
MultiOMICS mechanistic identification of predictors of HIV DNA decay, restoration of immune homeostasis and HIV specific immunity in PWH with cancer receiving Immune check point therapy
接受免疫检查点治疗的癌症患者中 HIV DNA 衰变、免疫稳态恢复和 HIV 特异性免疫的预测因子的多组学机制鉴定
- 批准号:
10731665 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别:
Multiplexed drug testing of micro-dissected tumors using a microfluidic platform with integrated electrochemical aptasensors
使用具有集成电化学适体传感器的微流体平台对显微解剖肿瘤进行多重药物测试
- 批准号:
10669408 - 财政年份:2023
- 资助金额:
$ 56.7万 - 项目类别: