Development of advanced cardiac SPECT imaging technologies

先进心脏 SPECT 成像技术的开发

基本信息

  • 批准号:
    10673649
  • 负责人:
  • 金额:
    $ 79.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Project Abstract Single Photon Emission Computed Tomography (SPECT) continues to play a critical role in the diagnosis and management of coronary artery disease (CAD). While conventional SPECT scanners using parallel-hole collimators are still the foundation of cardiac SPECT, recently our field observed an exciting growth of new developments of dedicated cardiac scanners. Such dedicated scanners, such as the GE Alcyone 530/570c systems and the D-SPECT systems both with CZT detectors, typically have multiple detectors collecting photons emitted from the heart simultaneously, leading to dramatically improved sensitivity (2-5 X). In addition, the GE systems use pinhole collimators and can achieve much higher resolution. These dedicated scanners opened doors to new applications with significant clinical impact, including ultra-low-dose imaging, absolute quantification of myocardial blood flow (MBF) and coronary flow reserve (CFR), high resolution molecular imaging, multi-isotope imaging, motion correction, and many more. Most of these new applications are uniquely achievable only using dedicated scanners. While the dedicated cardiac SPECT systems can improve clinical practice and lead to numerous new clinical applications, such systems are far from being optimized to fully realize their great potentials. In this grant, we propose to systematically develop and optimize innovative imaging technologies for the GE 530/570c systems to further improve its clinical efficacy in a variety of significant ways. In Aim 1, we will develop and optimize methods for static cardiac SPECT imaging. We will develop various deep learning methods and investigate approaches to increase angular sampling to reduce noise, and improve resolution and quantitative accuracy. In Aim 2, we will develop and validate methods for dynamic SPECT imaging, particularly involving direct parametric image reconstruction. In Aim 3, we will develop and validate methods for dual-isotope SPECT. Monte Carso simulation and deep learning based methods will be developed for tracers with different spatial distributions and fast kinetics. In all three aims, large animal studies and human subject data will be used for optimization and validation.
项目摘要 单光子发射计算机断层扫描 (SPECT) 在诊断和诊断方面继续发挥着关键作用 冠状动脉疾病(CAD)的管理。而传统的 SPECT 扫描仪使用平行孔 准直器仍然是心脏 SPECT 的基础,最近我们的领域观察到新的准直器的令人兴奋的增长 专用心脏扫描仪的发展。此类专用扫描仪,例如 GE Alcyone 530/570c 系统和 D-SPECT 系统均配有 CZT 探测器,通常有多个探测器收集 光子从心脏同时发射,从而显着提高灵敏度(2-5 X)。此外, GE 系统使用针孔准直器,可以实现更高的分辨率。这些专用扫描仪 为具有重大临床影响的新应用打开了大门,包括超低剂量成像、绝对 心肌血流量(MBF)和冠状动脉血流储备(CFR)的量化,高分辨率分子 成像、多同位素成像、运动校正等等。这些新应用大部分是 仅使用专用扫描仪即可实现。虽然专用心脏 SPECT 系统可以改善 临床实践并导致许多新的临床应用,此类系统还远未优化到 充分发挥他们的巨大潜力。在这笔赠款中,我们建议系统地开发和优化创新 GE 530/570c 系统的成像技术进一步提高其在各种疾病中的临床疗效 重要的方式。在目标 1 中,我们将开发和优化静态心脏 SPECT 成像方法。我们将 开发各种深度学习方法并研究增加角度采样以减少 噪声,并提高分辨率和定量精度。在目标 2 中,我们将开发并验证方法 动态 SPECT 成像,特别是涉及直接参数图像重建。在目标 3 中,我们将 开发和验证双同位素 SPECT 方法。基于蒙特卡索模拟和深度学习 将为具有不同空间分布和快速动力学的示踪剂开发方法。在这三个目标中, 大型动物研究和人类受试者数据将用于优化和验证。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT.
  • DOI:
    10.1007/s00259-022-05718-8
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    9.1
  • 作者:
    Chen, Xiongchao;Zhou, Bo;Xie, Huidong;Shi, Luyao;Liu, Hui;Holler, Wolfgang;Lin, MingDe;Liu, Yi-Hwa;Miller, Edward J.;Sinusas, Albert J.;Liu, Chi
  • 通讯作者:
    Liu, Chi
Automatic Inter-Frame Patient Motion Correction for Dynamic Cardiac PET Using Deep Learning.
  • DOI:
    10.1109/tmi.2021.3082578
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Shi L;Lu Y;Dvornek N;Weyman CA;Miller EJ;Sinusas AJ;Liu C
  • 通讯作者:
    Liu C
DuDoSS: Deep-learning-based dual-domain sinogram synthesis from sparsely sampled projections of cardiac SPECT.
DuDoSS:基于心脏 SPECT 稀疏采样投影的基于深度学习的双域正弦图合成。
  • DOI:
    10.1002/mp.15958
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Chen,Xiongchao;Zhou,Bo;Xie,Huidong;Miao,Tianshun;Liu,Hui;Holler,Wolfgang;Lin,MingDe;Miller,EdwardJ;Carson,RichardE;Sinusas,AlbertJ;Liu,Chi
  • 通讯作者:
    Liu,Chi
Increasing angular sampling through deep learning for stationary cardiac SPECT image reconstruction.
通过深度学习增加角度采样以进行静态心脏 SPECT 图像重建。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chi Liu其他文献

Chi Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chi Liu', 18)}}的其他基金

Multi-isotope Hybrid PET/CT Imaging of Peripheral Artery Disease in Diabetes
糖尿病周围动脉疾病的多同位素混合 PET/CT 成像
  • 批准号:
    10586846
  • 财政年份:
    2022
  • 资助金额:
    $ 79.76万
  • 项目类别:
Development of advanced cardiac SPECT imaging technologies
先进心脏 SPECT 成像技术的开发
  • 批准号:
    10064473
  • 财政年份:
    2020
  • 资助金额:
    $ 79.76万
  • 项目类别:
Generation of parametric images for FDG PET using dual-time-point scans
使用双时间点扫描生成 FDG PET 参数图像
  • 批准号:
    9896329
  • 财政年份:
    2020
  • 资助金额:
    $ 79.76万
  • 项目类别:
Development of advanced cardiac SPECT imaging technologies
先进心脏 SPECT 成像技术的开发
  • 批准号:
    10221049
  • 财政年份:
    2020
  • 资助金额:
    $ 79.76万
  • 项目类别:
Generation of parametric images for FDG PET using dual-time-point scans
使用双时间点扫描生成 FDG PET 参数图像
  • 批准号:
    10117077
  • 财政年份:
    2020
  • 资助金额:
    $ 79.76万
  • 项目类别:
Development of advanced cardiac SPECT imaging technologies
先进心脏 SPECT 成像技术的开发
  • 批准号:
    10442757
  • 财政年份:
    2020
  • 资助金额:
    $ 79.76万
  • 项目类别:
SPECT Imaging of Peripheral Vascular Disease
周围血管疾病的 SPECT 成像
  • 批准号:
    10460368
  • 财政年份:
    2019
  • 资助金额:
    $ 79.76万
  • 项目类别:
SPECT Imaging of Peripheral Vascular Disease
周围血管疾病的 SPECT 成像
  • 批准号:
    10248379
  • 财政年份:
    2019
  • 资助金额:
    $ 79.76万
  • 项目类别:
SPECT Imaging of Peripheral Vascular Disease
周围血管疾病的 SPECT 成像
  • 批准号:
    10006027
  • 财政年份:
    2019
  • 资助金额:
    $ 79.76万
  • 项目类别:
Personalized Task-Based Respiratory Motion Correction for Low-Dose PET/CT
基于任务的个性化低剂量 PET/CT 呼吸运动校正
  • 批准号:
    10436864
  • 财政年份:
    2018
  • 资助金额:
    $ 79.76万
  • 项目类别:

相似国自然基金

减少编程错误:基于认证内核的全新的快捷依赖类型PiSigma高级编程语言开发
  • 批准号:
    61070023
  • 批准年份:
    2010
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Brain Digital Slide Archive: An Open Source Platform for data sharing and analysis of digital neuropathology
Brain Digital Slide Archive:数字神经病理学数据共享和分析的开源平台
  • 批准号:
    10735564
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
  • 批准号:
    10601679
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
  • 批准号:
    10637391
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
  • 批准号:
    10742435
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
Moving Beyond the Individual- A Data-driven Approach to Improving the Evidence on the Role of Community and Societal Determinants of HIV among Adolescent Girls and Young Women in Sub-Saharan Africa
超越个人——采用数据驱动的方法来改善关于艾滋病毒在撒哈拉以南非洲地区少女和年轻妇女中的社区和社会决定因素的作用的证据
  • 批准号:
    10619319
  • 财政年份:
    2023
  • 资助金额:
    $ 79.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了