Lung-specific ultrasound beamforming for diagnostic imaging
用于诊断成像的肺部特异性超声波束形成
基本信息
- 批准号:10673127
- 负责人:
- 金额:$ 19.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAcuteAcute Respiratory Distress SyndromeAddressAdmission activityAdoptionAirAlveolarAnatomyBase SequenceCOVID-19CalibrationChronicChronic PhaseClinicalCommunitiesComplexCustomDataData SetDiagnosisDiagnostic ImagingDiseaseElectronsFamily suidaeHuman bodyImageImage AnalysisImaging DeviceLeftLinkLungLung diseasesMachine LearningMapsMeasurementMeasuresMethodsMiniaturizationModalityModelingMonitorMorphologic artifactsPenetrationPhysicsPleuraPleuralPleural effusion disorderPneumothoraxPublic HealthPulmonary PathologySensitivity and SpecificitySeveritiesSourceStructureStructure of parenchyma of lungSumSyndromeSystemTechniquesTissue imagingTissuesUltrasonographyX-Ray Computed TomographyX-Ray Medical Imagingaccurate diagnosisconvolutional neural networkcostdesigndiagnostic valueexperimental studyimaging modalityimaging systemimprovedin silicoin vivointerstitiallung basal segmentlung imagingpoint of careportabilityrational designsimulationsoft tissuetoolultrasound
项目摘要
PROJECT SUMMARY
Accurate diagnosis and monitoring of lung disease, including the urgent need arising from Covid-19, could be
widely addressed by ultrasound imaging. The standard modalities that diagnose and monitor lung disease are
X-ray imaging and computed tomography (CT) due to their extensive diagnostic capabilities. Ultrasound may not
be normally thought of as a primary lung imaging modality, however in the hands of an expert user it has a
sensitivity and specificity ranging from 90% to 100% relative to CT.
For non-expert users the interpretation of lung ultrasound images can be complex because ultrasound cannot
penetrate the soft-tissue/air interface. Thus, lung ultrasound relies on the interpretation of imaging "artefacts"
that appear to come from deep inside the air space of the lung, but are actually complex reverberations from the
pleural interface. These reflections carry information about the underlying lung pathology. This indirect imaging
and clinical interpretation approach is fundamentally different from imaging in soft tissue, where echos come
directly from the structures being imaged. Nevertheless, delay-and-sum beamforming methods currently used
in ultrasound systems are identical for lung imaging and soft tissue imaging. The lack of understanding of the
fundamental acoustics at the complex soft-tissue/air interface remains an impediment to the rational design of
ultrasound imaging sequences that can relate directly to lung acoustics and would be more sensitive to disease.
To overcome this challenge, we propose to develop and validate new ultrasound imaging and beamforming
methods using a physics-based approach that establishes a quantitative link between ultrasound imaging and
the disease state of the lungs. We hypothesize that ultrasound beamforming techniques that are designed
specifically for the lung and its complex reverberation physics will generate higher quality images, improved
clinical interpretability, and diagnostic capabilities. We will develop acoustical simulation tools and simulations of
the human body and lung disease that are experimentally calibrated to accurately represent the relevant
reverberation physics, such as A-line and B-line artefacts. Spatial coherence beamformers, which rely on
reverberation as a source of contrast and machine learning beamformers will be designed and optimized to
detect lung disease. These beamformers will be implemented on a programmable scanner and compared to
conventional B-mode imaging. If successful, this proposal will yield ultrasound imaging methods that are more
sensitive to lung disease, with clearer clinical interpretability, that can be deployed in current ultrasound imaging
systems.
项目概要
肺部疾病的准确诊断和监测,包括 Covid-19 引起的迫切需求,可以
超声成像广泛解决了这一问题。诊断和监测肺部疾病的标准方法是
X 射线成像和计算机断层扫描 (CT) 具有广泛的诊断功能。超声波可能不会
通常被认为是主要的肺部成像方式,但是在专家用户手中,它具有
相对于 CT 的敏感性和特异性范围为 90% 至 100%。
对于非专家用户来说,肺部超声图像的解释可能很复杂,因为超声不能
穿透软组织/空气界面。因此,肺部超声依赖于成像“伪影”的解释
这些声音看似来自肺部深处的空气空间,但实际上是来自肺部的复杂混响。
胸膜界面。这些反射携带有关潜在肺部病理学的信息。这种间接成像
临床解释方法与软组织成像根本不同,软组织成像会产生回声
直接来自正在成像的结构。尽管如此,目前使用的延迟求和波束形成方法
超声系统中的肺部成像和软组织成像是相同的。缺乏对问题的理解
复杂软组织/空气界面的基本声学仍然是合理设计的障碍
超声成像序列可以直接与肺声学相关并且对疾病更敏感。
为了克服这一挑战,我们建议开发和验证新的超声成像和波束形成
使用基于物理的方法在超声成像和
肺部的疾病状态。我们假设设计的超声波束形成技术
专门针对肺部及其复杂的混响物理将生成更高质量的图像,改进
临床可解释性和诊断能力。我们将开发声学模拟工具和模拟
经过实验校准以准确表示相关的人体和肺部疾病
混响物理,例如 A 线和 B 线伪影。空间相干波束形成器,它依赖于
混响作为对比源,机器学习波束形成器将被设计和优化以
检测肺部疾病。这些波束形成器将在可编程扫描仪上实现,并与
传统的 B 型成像。如果成功,该提案将产生更先进的超声成像方法
对肺部疾病敏感,具有更清晰的临床解释性,可应用于当前的超声成像
系统。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrasound imaging of lung disease and its relationship to histopathology: An experimentally validated simulation approach.
- DOI:10.1121/10.0021870
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Oleksii Ostras;I. Shponka;G. Pinton
- 通讯作者:Oleksii Ostras;I. Shponka;G. Pinton
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gianmarco Pinton其他文献
Gianmarco Pinton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gianmarco Pinton', 18)}}的其他基金
Lung-specific ultrasound beamforming for diagnostic imaging
用于诊断成像的肺部特异性超声波束形成
- 批准号:
10440831 - 财政年份:2022
- 资助金额:
$ 19.03万 - 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
- 批准号:
10595030 - 财政年份:2021
- 资助金额:
$ 19.03万 - 项目类别:
A machine learning ultrasound beamformer based on realistic wave physics for high body mass index imaging
基于真实波物理学的机器学习超声波束形成器,用于高体重指数成像
- 批准号:
10435438 - 财政年份:2021
- 资助金额:
$ 19.03万 - 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
- 批准号:
8863091 - 财政年份:2015
- 资助金额:
$ 19.03万 - 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
- 批准号:
9039163 - 财政年份:2015
- 资助金额:
$ 19.03万 - 项目类别:
Shear shock wave propagation in the brain: high frame-rate ultrasound imaging, characterization, and simulations
剪切冲击波在大脑中的传播:高帧率超声成像、表征和模拟
- 批准号:
9253438 - 财政年份:2015
- 资助金额:
$ 19.03万 - 项目类别:
相似国自然基金
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
锌离子转运蛋白SLC39A1在急性呼吸窘迫综合征中的作用和机制
- 批准号:32371177
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
特络细胞源性外泌体经JAK/STAT-miRNA-E2F轴修复肺血管改善急性呼吸窘迫综合征的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
线粒体环形孔道释放ox-mtDNA引起肺泡巨噬细胞焦亡及HMGB1分泌致脓毒症相关急性呼吸窘迫综合征的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
相似海外基金
Lung-specific ultrasound beamforming for diagnostic imaging
用于诊断成像的肺部特异性超声波束形成
- 批准号:
10440831 - 财政年份:2022
- 资助金额:
$ 19.03万 - 项目类别:
Drop-of-blood technology for diagnosis and therapeutic drug monitoring in patients with infectious disease
滴血技术用于传染病患者的诊断和治疗药物监测
- 批准号:
10373422 - 财政年份:2022
- 资助金额:
$ 19.03万 - 项目类别:
Drop-of-blood technology for diagnosis and therapeutic drug monitoring in patients with infectious disease
滴血技术用于传染病患者的诊断和治疗药物监测
- 批准号:
10666354 - 财政年份:2022
- 资助金额:
$ 19.03万 - 项目类别:
Determining the Impact of Swallowing Impairment in People recovering from Severe COVID-19 Infection
确定吞咽障碍对从严重 COVID-19 感染中恢复的人的影响
- 批准号:
10163657 - 财政年份:2020
- 资助金额:
$ 19.03万 - 项目类别: