The Impact of Federal COVID-19 Provider Relief Funds on Patients, Hospitals, and Disparities
联邦 COVID-19 提供者救济基金对患者、医院和差异的影响
基本信息
- 批准号:10673511
- 负责人:
- 金额:$ 4.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2024-07-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Summary/Abstract
The outbreak of COVID-19 in 2020 imposed extreme demands on the US medical system. Congress
responded with $178 billion in emergency relief to be shared among hospitals, physicians, and other providers.
However, little is known about the impact of these funds on inpatient capacity, patient experience, patient
mortality, or closure and consolidation. The impact of funding on racial/ethnic disparities is also unknown. I
aim to address these gaps in knowledge.
I propose to exploit a natural experiment made possible by how the US Department of Health and Human
Services (HHS) distributed $34 billion in COVID-19 relief funds for hospitals. These funds, awarded to safety-
net hospitals and hospitals with high numbers of COVID-19 cases early in the pandemic, were allocated using
formulas with inflexible thresholds. Using regression discontinuity methods, I will compare outcomes at
hospitals barely missing the criteria for funding with hospitals barely surpassing the criteria for funding. I will
extend the common regression discontinuity design to accommodate the multi-variable, multi-cutoff formulas
adopted by HHS for fund allocation.
Results will have broad policy relevance in several respects, irrespective of whether I detect statistically
significant effects. Findings will speak to the advisability of channeling finite resource to the acute care system
when public health conditions next overwhelm capacity. Evaluation of this relationship between funding and
capacity will speak directly to AHRQ’s focus on improving safety, quality, and access. The research will
increase understanding of the trade-off between quality and affordability, which can in turn inform decisions
around cost containment. In addition, the research will contribute to understanding of the relationship between
hospital funding, hospital closures, and competition-reducing consolidation. Closures and consolidation
represent perennial challenge to access and affordability – areas of key focus for AHRQ. Finally, findings will
speak to the extent that politically viable, “color-blind” policies can reduce disparities across racial and ethnic
lines. In so doing, findings can inform the tactics used by policymakers and advocates to reduce healthcare
inequities
项目摘要/摘要
Covid-19于2020年对美国国会提出了极端需求
回应了1780亿美元的紧急救济,将在医院,医师和其他提供者之间分享。
但是,对于资金对住院容量,患者经验,患者的影响知之甚少
死亡率或封闭和巩固。
旨在解决知识中的这些差距。
我建议利用美国卫生和人类部如何进行的自然实验
Services(HHS)在Covid-19中分配了340亿美元的医院救济资金。
在大流行的早期,净峰值和高数量的共同Casses的净峰值和霍斯峰被分配
使用回归不连续方法的不灵活阈值的公式,我将在
医院的酒吧几乎没有缺少用于医院资金的标准,几乎没有超过资金标准。
扩展常见的回归不连续设计,以适应多变量的多切法公式
由HHS通过用于资金分配。
结果将在几个重新选择中扩大政策的重新结合,而不管我是否从统计上检测到
重大影响将与将有限资源引入急性护理系统的建议
当公共卫生条件下一个压倒性的卡皮斯时。
能力将直接表达AHRQ的重点,以提高安全性,质量和访问。
提高对质量和负担能力之间权衡的理解,这反过来可以为决策提供信息
成本围绕成本。
封闭和合并。
代表访问和负担能力的多年生挑战 - 最终,AHRQ的关键领域
在某种程度上说,政治上的“色盲”政策可以减少罗斯尔和种族之间的差异
线条。
不平等
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason David Buxbaum其他文献
Jason David Buxbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高可信联邦图学习基础理论与方法研究
- 批准号:62376103
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高效公平的个性化联邦学习算法与理论
- 批准号:62376110
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
无环境交互的离线联邦强化学习机制研究
- 批准号:62302260
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
基于移动智能的自适应持续联邦学习
- 批准号:62301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向物联网场景与设备多样性的联邦学习优化方法
- 批准号:62306283
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
COVID-19 Vaccine Uptake and Risk Mitigation Behaviors: Understanding the Role of Institutional Trust
COVID-19 疫苗接种和风险缓解行为:了解机构信任的作用
- 批准号:
10652864 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
Impact of the Coronavirus Disease 2019 Pandemic on Cardiovascular HealthcareUtilization, Quality of Care, and Clinical Outcomes
2019 年冠状病毒病大流行对心血管医疗保健利用、护理质量和临床结果的影响
- 批准号:
10643612 - 财政年份:2023
- 资助金额:
$ 4.31万 - 项目类别:
Expanding the impact of cancer prevention policies through collaborative implementation research: a qualitative secondary analysis of federal child nutrition assistance policies during COVID-19
通过协作实施研究扩大癌症预防政策的影响:对 COVID-19 期间联邦儿童营养援助政策的定性二次分析
- 批准号:
10372314 - 财政年份:2022
- 资助金额:
$ 4.31万 - 项目类别:
Impact of Medicare Part D opioid safety policies on disabled beneficiaries before and during the COVID-19 pandemic
Medicare D 部分阿片类药物安全政策在 COVID-19 大流行之前和期间对残疾受益人的影响
- 批准号:
10681207 - 财政年份:2022
- 资助金额:
$ 4.31万 - 项目类别: