Biophysical Mechanisms of Force Transmission in Cytoskeletal Ensembles
细胞骨架中力传递的生物物理机制
基本信息
- 批准号:10672426
- 负责人:
- 金额:$ 33.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAffectArchitectureBinding ProteinsBiological AssayBiophysical ProcessCell divisionCell modelCell physiologyCellsCommunicationComplexCrosslinkerCytoskeletonDiseaseDisparateElementsEngineeringEnvironmentEquilibriumFamilyFilamentFoundationsGenerationsGoalsHeart DiseasesHybridsIn VitroIndividualIntracellular TransportKinesinLeadLifeMalignant NeoplasmsMechanicsMethodsMicrofilamentsMicrotubulesMolecularMolecular MotorsMotorMyosin ATPasePhysiologicalPliabilityPolymersProductivityProteinsQuartzResearchScreening procedureSignal TransductionSiteStructureSystemTechniquesTubulinWorkbiophysical toolscell motilitycrosslinkdiagnostic strategydiagnostic toolexperimental studyinnovationinterdisciplinary approachnoveloptic trapoptical trapsprotein crosslinkprotein functionreconstitutionsingle moleculetransmission processtreatment strategy
项目摘要
Project Summary:
Actin filaments and microtubules are cytoskeletal polymers essential for cell division, motility, and intracellular
transport, and deficiencies in these proteins are implicated in cancer, heart disease, and other disorders. In order
to facilitate vital tasks that span the entire cell, these filaments coordinate with each other through motor proteins,
such as kinesin and myosin, and associated binding proteins. The molecular basis for this communication
through tension and compression forces and how these signals propagate through the cytoskeleton is not well
understood. Approaches to study such cytoskeletal phenomena have traditionally been either at the single
molecule level or whole cell level, and the actin and microtubule cytoskeletons have generally been evaluated
as separate systems in vitro. While single molecule experiments, with methods such as optical trapping, have
been invaluable in deciphering the mechanics of individual motors, a completely reductionist approach with one
filament and one motor protein does not accurately represent the structural hierarchy in which crosslinking
motors and proteins function. On the other hand, cell level studies take place in a quite complex environment. In
this research plan, we will bridge the gap in scale and assay control by engineering novel, physiologically relevant
cytoskeletal environments, or nanocells, in which to probe motor protein mechanics and cytoskeletal crosstalk.
Much like LEGOs, we can choose which cytoskeletal elements to incorporate in our nanocell’s architecture and
tune the building blocks accordingly to understand how changes at the molecular level propagate to system level
force generation and network stiffness. Using this innovative approach, our overarching goal is to provide a
fundamental molecular understanding of how motors, crosslinkers, filaments, and signaling factors communicate
with each other in ensembles and to the local cytoskeletal environment utilizing optical trapping, quartz crystal
microbalance with dissipation, and spectroscopic techniques. Specifically, we will investigate how myosins work
together in ensembles in actin assemblies and what molecular components dictate productive force generation.
Hybrid nanocells that consist of elements from both the actin and microtubule cytoskeleton will be probed to
understand how polymers of different stiffnesses, crosslinking proteins with different pliability, and motor proteins
with varying processivity and force generation capability affect cytoskeletal crosstalk. As E-hooks are the
diversity site of tubulin and uniquely influence motility in disparate kinesin families, we will interrogate how E-
hook structure affects ensemble kinesin force generation in nanocells. The proposed research will pave the way
to our long-term goal, which is not only to understand fundamental mechanisms that sustain life, but ultimately
be able to reconstitute physiologically realistic models of cellular processes in vitro, providing an enormous
potential for developing diagnostic and treatment strategies for cytoskeletal diseases.
项目概要:
肌动蛋白丝和微管是细胞骨架聚合物,对于细胞分裂、运动和细胞内活动至关重要
这些蛋白质的缺乏与癌症、心脏病和其他疾病有关。
为了促进跨越整个细胞的重要任务,这些细丝通过运动蛋白相互协调,
例如驱动蛋白和肌球蛋白以及相关的结合蛋白这种通讯的分子基础。
通过张力和压力以及这些信号如何通过细胞骨架传播尚不清楚
传统上,研究此类细胞骨架现象的方法要么是单一的。
分子水平或全细胞水平,一般评估肌动蛋白和微管细胞骨架
作为体外的独立系统,而使用光学捕获等方法进行的单分子实验已经取得了进展。
在破译单个电机的机械原理方面具有无价的价值,这是一种完全简化的方法,只需一个
丝和一种运动蛋白并不能准确地代表交联的结构层次
另一方面,细胞水平的研究是在相当复杂的环境中进行的。
在这项研究计划中,我们将通过工程新颖的、生理相关的来弥补规模和测定控制方面的差距
细胞骨架环境或纳米细胞,可在其中探测运动蛋白力学和细胞骨架串扰。
就像乐高积木一样,我们可以选择将哪些细胞骨架元素纳入纳米细胞的架构中,
相应地调整构建模块,以了解分子水平的变化如何传播到系统水平
使用这种创新方法,我们的首要目标是提供一种
对马达、交联剂、细丝和信号因子如何沟通的基本分子理解
利用光学捕获、石英晶体在整体中相互结合以及与局部细胞骨架环境
具体来说,我们将研究肌球蛋白的工作原理。
肌动蛋白组装体中的整体以及哪些分子成分决定生产力的产生。
由肌动蛋白和微管细胞骨架元素组成的混合纳米细胞将被探测
了解不同硬度的聚合物、不同柔韧性的交联蛋白质和运动蛋白质如何
不同的持续性和力产生能力会影响细胞骨架串扰,因为 E-hooks 是其中的关键。
微管蛋白的多样性位点并对不同驱动蛋白家族的运动产生独特的影响,我们将探究 E-
钩结构影响纳米细胞中整体驱动蛋白力的产生,这项研究将为这一研究铺平道路。
我们的长期目标不仅是了解维持生命的基本机制,而且最终
能够在体外重建细胞过程的生理学真实模型,提供巨大的
开发细胞骨架疾病诊断和治疗策略的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dana Nicole Reinemann其他文献
Dana Nicole Reinemann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dana Nicole Reinemann', 18)}}的其他基金
Biophysical Mechanisms of Force Transmission in Cytoskeletal Ensembles
细胞骨架中力传递的生物物理机制
- 批准号:
10795268 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the Role of GARP Proteins in Rod Outer Segment Disc Formation and Retinal Degeneration
了解 GARP 蛋白在视杆外节盘形成和视网膜变性中的作用
- 批准号:
10748725 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
ACTIVITY-DRIVEN PLASTICITY OF THE HAIR CELL CYTOSKELETON
活动驱动的毛细胞细胞骨架的可塑性
- 批准号:
10748106 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Cyclic stretch of bicuspid aortic valves: elucidating its implications for cell signaling and tissue mechanics.
二叶式主动脉瓣的循环拉伸:阐明其对细胞信号传导和组织力学的影响。
- 批准号:
10607130 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
A Bioprinted Volumetric Model of Vascularized Glioblastoma
血管化胶质母细胞瘤的生物打印体积模型
- 批准号:
10717766 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别: