Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
基本信息
- 批准号:8941895
- 负责人:
- 金额:$ 37.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-12 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdultAdverse effectsAnimal ModelAnodesAnti-Arrhythmia AgentsAnxietyApoptoticArrhythmiaAutomated External DefibrillatorBullaCaliberCardiacCardiac MyocytesCardiac VolumeCathodesCause of DeathCell DeathCellsCessation of lifeChargeCicatrixDoseDyesElectric CountershockElectrodesElectroporationEndoplasmic ReticulumEngineeringExhibitsFrequenciesHeartHeart ArrestHospitalsHumanImageImplantable DefibrillatorsInfarctionInterventionLifeMembraneMembrane PotentialsModalityModelingMono-SMovementMuscleMuscle CellsMyocardialMyocardial dysfunctionMyocardiumNecrosisNerveOryctolagus cuniculusPainPathway interactionsPatientsPatternPhysiologic pulseProbabilityProceduresProtocols documentationReportingResearchRestResuscitationRiskSafetyShockSignal TransductionSwellingTachycardiaTechniquesTestingTimeTissuesTranslatingUnited StatesVentricularVentricular FibrillationVentricular TachycardiaWaterbasecell injuryelectric fieldexperienceimprovedin vivomillisecondmortalitynanosecondpublic health relevanceratiometricresearch studysolutesuccessuptakevoltagevoltage gated channel
项目摘要
DESCRIPTION (provided by applicant): Delivering intense electric shocks is the principal life-saving intervention to terminate ventricular fibrillation. During the past decades, a significant effort was made to improve the safety and efficiency of this procedure. Today's most common defibrillation waveform is biphasic (8-12 ms total duration) and delivers 20-40% less energy compared to earlier used monophasic shocks. The ongoing refinement of this technique is aimed at achieving the defibrillation by the first shock while minimizing the chance of complications (such as cell damage, arrhythmia, asystole, re-fibrillation, and myocardial dysfunction). We postulate that a recently introduced stimulation modality, the nanosecond pulsed electric field (nsPEF), possesses a unique combination of features that make it superior for defibrillation: (1) membranes are charged to the excitation threshold by displacement currents, so the shock energy can be markedly reduced, (2) the electric field penetrates deeper and is distributed more uniformly within tissue, (3) the excitation occurs simultaneously under the anode and the cathode and in the volume between them, thereby minimizing the chance of reentry arrhythmias and re-fibrillation, (4) the latter holds true even for myocardium with electri inhomogeneities, such as post-infarction scars, (5) simultaneous excitation of the myocardium is most effective to stop any excitation wavefronts of fibrillation, (6) in case of electroporation, nsPEF-opened membrane pores are limited to 1-1.5 nm diameter ("nanoelectropores"), so the undesired transmembrane "leaks" are reduced, (7) being less damaging, nanoporation will still have the anti-arrhythmic effect by reducing myocyte excitability, (8) transient inhibition of voltage-gated Na+ and Ca2+ channels by nsPEF will assist the anti-arrhythmic effect, and (9) the exponential increase of lethal dose values for nsPEF translates into a higher safety factor. These unique features warrant research into nsPEF as a potentially more efficient but less disruptive defibrillation modality. In our trials with Langendorff-perfused rabbit hearts, nsPEF effectively stopped fibrillation at doses about 20-fold less than reported for a biphasic waveform in a comparable setup and electrode configuration. This project will analyze and compare the effects of 10-, 60-, and 300-ns PEF with conventional mono- and biphasic waveforms (MW, 4 ms, and BW, 4+4 ms) at the single cardiomyocyte level and in hearts: (1) We will compare the success of defibrillation, assess the electroporative dye uptake and tissue damage, and the ratio of the effective and damaging E-field and energy values in Langendorff-perfused rabbit heart model, (2) We will identify nsPEF effects on the resting membrane potential, action potential, voltage-gated currents, and excitability. (3) We will quantify nsPEF effects on the viability of cardiomyocytes, identify mechanisms and pathways of cell damage and death, and compare the lethal effects of nsPEF, BW, and MW. The project is expected to establish the feasibility and benefits of nsPEF defibrillation, and provide the basis for in vivo trials.
描述(由申请人提供): 提供强烈的电击是终止心室颤动的主要救生干预措施。在过去的几十年中,人们为提高该过程的安全性和效率做出了巨大的努力,当今最常见的除颤波形是双相的。 (总持续时间为 8-12 毫秒),与早期使用的单相电击相比,能量减少 20-40%。该技术的不断完善旨在实现我们假设最近引入的刺激方式纳秒脉冲电场 (nsPEF) 具有以下特点:独特的功能组合使其在除颤方面具有优越性:(1) 膜通过位移电流充电至激励阈值,因此可以显着降低电击能量,(2)电场穿透更深,并且在组织内分布更均匀,(3) 激励同时发生在阳极和阴极下方以及它们之间的体积中,从而最大限度地减少折返性心律失常和再颤动的机会,(4) 后者即使对于具有电不均匀性的心肌(例如梗塞后疤痕)也是如此,(5)心肌的同时激励对于阻止任何激励波前是最有效的。 (6) 在电穿孔的情况下,nsPEF 打开的膜孔直径限制在 1-1.5 nm(“纳米电孔”),因此减少了不需要的跨膜“泄漏”,(7) 破坏性较小,纳米孔仍然具有通过降低心肌细胞兴奋性来发挥抗心律失常作用,(8) nsPEF 对电压门控 Na+ 和 Ca2+ 通道的瞬时抑制将有助于抗心律失常作用,(9) nsPEF 致死剂量值的指数增加转化为更高的安全系数,这些独特的功能值得在我们的试验中将 nsPEF 作为一种潜在更有效但破坏性较小的除颤方式进行研究。对于 Langendorff 灌注的兔心脏,nsPEF 在可比较的设置和电极配置中以比报告的双相波形少约 20 倍的剂量有效地停止了颤动。 10、60 和 300 ns PEF 与传统单相和双相波形(MW,4 ms 和 BW,4+4 ms)在单心肌细胞水平和心脏中的影响:(1)我们将比较除颤成功,评估电穿孔染料摄取和组织损伤,以及兰根多夫灌注兔心脏模型中有效和损伤电场和能量值的比率,(2)我们将确定 nsPEF 对静息膜电位、动作电位、电压门控电流和兴奋性的影响 (3) 我们将量化 nsPEF 对心肌细胞活力的影响,确定细胞损伤和死亡的机制和途径,并比较致死性。该项目预计将确定 nsPEF 除颤的可行性和益处,并为体内试验提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrei G Pakhomov其他文献
Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied by Immunogenic Cell Death in Murine Models of Lymphoma and Colorectal Cancer
纳秒脉冲电场在淋巴瘤和结直肠癌小鼠模型中诱导内质网应激并伴有免疫原性细胞死亡
- DOI:
10.3390/cancers11122034 - 发表时间:
2019-12-01 - 期刊:
- 影响因子:5.2
- 作者:
Aless;ra Rossi;ra;Olga N Pakhomova;P. Mollica;M. Casciola;Uma M Mangalanathan;Andrei G Pakhomov;C. Muratori - 通讯作者:
C. Muratori
Andrei G Pakhomov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrei G Pakhomov', 18)}}的其他基金
Next Generation Temporal Interference Stimulation for Non-Invasive Neuromodulation
用于非侵入性神经调节的下一代时间干扰刺激
- 批准号:
10615485 - 财政年份:2023
- 资助金额:
$ 37.83万 - 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:
10515459 - 财政年份:2022
- 资助金额:
$ 37.83万 - 项目类别:
Targeted Neuromodulation by Nanosecond Pulsed Electric Fields
纳秒脉冲电场的靶向神经调节
- 批准号:
10669767 - 财政年份:2022
- 资助金额:
$ 37.83万 - 项目类别:
Low Energy Defibrillation with Nanosecond Pulsed Electric Field
纳秒脉冲电场低能量除颤
- 批准号:
9278268 - 财政年份:2015
- 资助金额:
$ 37.83万 - 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
- 批准号:
8811947 - 财政年份:2014
- 资助金额:
$ 37.83万 - 项目类别:
Picosecond pulse technology for non-invasive electrostimulation
用于无创电刺激的皮秒脉冲技术
- 批准号:
8636788 - 财政年份:2014
- 资助金额:
$ 37.83万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
8099680 - 财政年份:2010
- 资助金额:
$ 37.83万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
7984696 - 财政年份:2010
- 资助金额:
$ 37.83万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
8298579 - 财政年份:2010
- 资助金额:
$ 37.83万 - 项目类别:
Mechanisms and Implications of Nanoelectroporation in Living Cells
活细胞纳米电穿孔的机制和意义
- 批准号:
8500364 - 财政年份:2010
- 资助金额:
$ 37.83万 - 项目类别:
相似国自然基金
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Virtual systemic identification of drug targets of obesity candidate genes
肥胖候选基因药物靶点的虚拟系统识别
- 批准号:
10639818 - 财政年份:2023
- 资助金额:
$ 37.83万 - 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
- 批准号:
10740796 - 财政年份:2023
- 资助金额:
$ 37.83万 - 项目类别:
Engineered BacNav and BacCav for Improved Excitability and Contraction
专为改善兴奋性和收缩性而设计的 BacNav 和 BacCav
- 批准号:
10392121 - 财政年份:2022
- 资助金额:
$ 37.83万 - 项目类别:
Systematic identification of cardiotoxic e-cigarette flavorants
系统鉴定心脏毒性电子烟香料
- 批准号:
10610732 - 财政年份:2022
- 资助金额:
$ 37.83万 - 项目类别:
Systematic identification of cardiotoxic e-cigarette flavorants
系统鉴定心脏毒性电子烟香料
- 批准号:
10451184 - 财政年份:2022
- 资助金额:
$ 37.83万 - 项目类别: