Informatics Approach to Identification and Deep Phenotyping of PASC Cases

PASC 病例识别和深度表型分析的信息学方法

基本信息

  • 批准号:
    10696087
  • 负责人:
  • 金额:
    $ 18.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-06 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Increasingly there have been reports of persistent symptoms and multi-organ multi-system manifestations (e.g., pulmonary, cardiovascular, renal, and neurological) among individuals who were recovered from the acute phase of COVID-19, denoted as Post-Acute Sequela of SARS-CoV-2 infection (PASC). Given that 76.7 million people are known to have been infected in the US as of February of 2022, millions of people will potentially experience PASC. This projected disease burden will have a profound public health impact with respect to patients' clinical outcomes and US health systems during post-COVID-19 care. Timely identification of individuals with PASC from existing COVID-19 cohorts and newly identified COVID-19 patients is urgently needed for PASC clinics and longitudinal cohort studies on PASC. Building on biomedical informatics methodologies, we propose a high- throughput and semi-supervised Deep Phenotyping approach to identifying individuals with PASC and characterizing their phenotypes. Our approach is based on a Graph representational model constructed based on the South Carolina COVID-19 Cohort (S3C), funded by the National Institute of Allergy and Infectious Diseases (NIAID) (R01A127203-4S1). S3C (n=~1,400, 000 COVID-19 patients by the February of 2022) is a multi-modal data repository consisting of EHR, health systems data, community-based health services data, and claims data, with complete temporal trajectory of every datum at individual-level. Building on top of the Graph model, we will detect phenotypes of candidate PASC patients by using unsupervised clustering algorithms. We will then identify and validate clinically plausible PASC cases and corresponding phenotypes by incorporating clinical evaluation and supervised algorithms. This study will result in a high-throughput algorithm application for identifying and characterizing PASC cases from COVID-19 EHR cohorts. The resulted EHR and machine learning models are interpretable, generalizable, and will form a foundation for testing and implementing in state-wide and national post-COVID clinics/programs.
项目概要/摘要 越来越多关于持续症状和多器官多系统表现的报道(例如, 从急性期恢复的个体中的肺部、心血管、肾脏和神经系统) COVID-19,表示为 SARS-CoV-2 感染的急性后遗症 (PASC)。鉴于 7670 万人 截至 2022 年 2 月,已知在美国已被感染,数百万人可能会经历 帕斯卡。这种预计的疾病负担将对患者的临床症状产生深远的公共卫生影响 COVID-19 后护理期间的结果和美国卫生系统。及时识别 PASC 患者 PASC 诊所迫切需要从现有的 COVID-19 队列和新发现的 COVID-19 患者中获取 PASC 的纵向队列研究。基于生物医学信息学方法,我们提出了一种高 吞吐量和半监督深度表型方法来识别具有 PASC 和 表征他们的表型。我们的方法基于构建的图表示模型 南卡罗来纳州 COVID-19 队列 (S3C),由国家过敏和传染病研究所资助 疾病 (NIAID) (R01A127203-4S1)。 S3C(截至 2022 年 2 月,n=~1,400, 000 名 COVID-19 患者)是 多模式数据存储库,包括电子病历、卫生系统数据、基于社区的卫生服务数据和 索赔数据,包含个人层面每个数据的完整时间轨迹。建立在图表之上 模型中,我们将使用无监督聚类算法检测候选 PASC 患者的表型。我们 然后将通过整合来识别和验证临床上合理的 PASC 病例和相应的表型 临床评估和监督算法。这项研究将带来高通量算法应用 用于识别和描述来自 COVID-19 EHR 队列的 PASC 病例。由此产生的 EHR 和机器 学习模型是可解释的、可推广的,并将成为测试和实施的基础 全州和国家新冠疫情后诊所/项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Li其他文献

Xiaoming Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Li', 18)}}的其他基金

Big Data Analytics Emerging Scholar (e-Scholar) Program for Minority Students
少数民族学生大数据分析新兴学者(e-Scholar)计划
  • 批准号:
    10554786
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
University of South Carolina Big Data Health Science Conference
南卡罗来纳大学大数据健康科学会议
  • 批准号:
    10751656
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
Visualizing and predicting new and late HIV diagnosis in South Carolina: A Big Data approach
可视化和预测南卡罗来纳州新的和晚期的艾滋病毒诊断:大数据方法
  • 批准号:
    10815140
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
Informatics Approach to Identification and Deep Phenotyping of PASC Cases
PASC 病例识别和深度表型分析的信息学方法
  • 批准号:
    10574753
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
Utilizing All of Us data to examine the impact of COVID-19 on mental health among people living with HIV
利用 All of Us 数据研究 COVID-19 对 HIV 感染者心理健康的影响
  • 批准号:
    10657875
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
  • 批准号:
    10481286
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
Curating a Knowledge Base for Individuals with Coinfection of HIV and SARS-CoV-2: EHR-based Data Mining
为 HIV 和 SARS-CoV-2 混合感染者打造知识库:基于 EHR 的数据挖掘
  • 批准号:
    10665078
  • 财政年份:
    2022
  • 资助金额:
    $ 18.04万
  • 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
  • 批准号:
    10666508
  • 财政年份:
    2021
  • 资助金额:
    $ 18.04万
  • 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
  • 批准号:
    10311679
  • 财政年份:
    2021
  • 资助金额:
    $ 18.04万
  • 项目类别:
Big Data Health Science Fellow Program in Infectious Disease Research
传染病研究大数据健康科学研究生计划
  • 批准号:
    10897421
  • 财政年份:
    2021
  • 资助金额:
    $ 18.04万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
  • 批准号:
    10710712
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
Traumatic Brain Injury Anti-Seizure Prophylaxis in the Medicare Program
医疗保险计划中的创伤性脑损伤抗癫痫预防
  • 批准号:
    10715238
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
  • 批准号:
    10651082
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
Elucidating causal mechanisms of ethanol-induced analgesia in BXD recombinant inbred mouse lines
阐明 BXD 重组近交系小鼠乙醇诱导镇痛的因果机制
  • 批准号:
    10825737
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10746903
  • 财政年份:
    2023
  • 资助金额:
    $ 18.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了