Molecular mechanisms of mechanosensation in the cardiac pacemaker
心脏起搏器机械感觉的分子机制
基本信息
- 批准号:10670328
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAffectAnimalsAreaArrhythmiaBloodCalciumCalcium OscillationsCardiacCardiac pacemakerCellsCharacteristicsChemicalsContractsCouplingDependenceDevelopmentElectrophysiology (science)EnvironmentFeedbackFiberGenerationsGoalsHeartHeart AtriumHeart RateImageIn Situ HybridizationIn VitroKnockout MiceLaboratoriesLungMechanicsMediatingModelingMolecularMusOrganPacemakersPerformancePhysiologicalPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsPositioning AttributePreparationProcessProprioceptionProtein IsoformsPumpReflex actionResearchRight atrial structureRoleSignal PathwaySignal TransductionSpace PerceptionSpecificityStretchingTelemetryTestingTissuesToxinTranslationsVenouscell typeexperimental studyheart electrical activityheart functionhigh resolution imagingin vivoinnovationinsightknock-downmechanical forcemechanotransductionmouse modelnodal myocytenoveloverexpressionpreventresponsesuperresolution imagingtoolultrasoundvoltage
项目摘要
Project Summary/Abstract
In this project, we will test the overall hypothesis that PIEZO channels mediate mechanosensation in the cardiac
pacemaker and that they are essential players on the heart rate acceleration evoked by mechanical stretch. We
will leverage our expertise in the study of the cardiac pacemaker to enter into two new research fields for our
laboratory: mechanosensation and mechano-electrical coupling. The heart is one of the most mechanically active
organs in the body. Besides being a remarkably effective pump, the heart senses its mechanical environment
and adjusts its performance to match the physiological demands. In a mechanism known as the “Bainbridge
Reflex”, the cardiac pacemaker responds to the stretch induced by the increase in venous return with an
acceleration of its pace to empty the heart effectively. To sense these constant changes in stretch, the
pacemaker is equipped with stretch-activated channels, however, their molecular identity remains elusive.
PIEZO channels mediate mechanotransduction in every cell type where its expression has been detected so far.
Despite being expressed in the pacemaker and being considered the candidate to mediate pacemaker
mechanotransduction, the role of PIEZO channels in this tissue has not been explored yet. This proposal will
directly test the role of PIEZO channels in the stretch-activated response of the cardiac pacemaker.
Our innovative approach includes the development of pacemaker-specific mouse lines to test the effect of PIEZO
knockdown and overexpression in the pacemaker activity at the cellular, tissue, and animal level. We will
combine immunodetection, in-situ hybridization, electrophysiology, high-resolution imaging, calcium imaging,
and telemetry to: (Aim 1) Characterize the abundance, isoform relative expression, cell-expression specificity,
and subcellular localization of Piezo1 and Piezo2 channels in the pacemaker tissue and isolated pacemaker
cells. (Aim 2) Evaluate the role of PIEZO channels in the pacemaker stretch-activated current, the stretch-
activated increase in intrinsic firing rate, the automaticity of pacemaker cells, and in their subthreshold calcium
activity. (Aim 3). Determine the role of PIEZO channels in the stretch-activated electrical and calcium responses
in the intact pacemaker tissue and their role in normal heart function in vivo. Completing the aims listed above
will provide new insight into the molecular mechanisms of mechanotransduction in pacemaker cells and will help
to identify novel targets for detecting and treating associated arrhythmias. Our results will also provide a diverse
toolkit to identify multiple important mechanisms behind the translation of pacemaker stretch into heart rate
acceleration, opening new avenues for our lab to study the downstream signaling pathways that are regulated
by the mechanical activation of PIEZO channels in this tissue.
项目摘要/摘要
在这个项目中,我们将测试压电通道介导心脏机制的总体假设
起搏器,他们是通过机械伸展引起的心率加速的重要参与者。我们
将利用我们在心脏起搏器研究中的专业知识来进入两个新的研究领域
实验室:机械力和机械电气耦合。心脏是最活跃的心脏之一
体内器官。此外,这是一个非常有效的泵,心脏会感觉到其机械环境
并调整其性能以符合身体需求。用称为“贝恩布里奇的机制”
反射”,心脏起搏器对静脉回流的增加而响应
加速其空间以有效清空心脏。为了感觉到这些不断的变化,
起搏器配备了拉伸激活的通道,但是它们的分子身份仍然难以捉摸。
压电通道介导了到目前为止检测到其表达的每种细胞类型的机械转移。
尽管在起搏器中表达并被认为是调解起搏器的候选人
机械转导,尚未探索压电通道在该组织中的作用。该提议将
直接测试压电通道在心脏起搏器的拉伸激活反应中的作用。
我们的创新方法包括开发起搏器特定的小鼠线以测试压电的效果
在细胞,组织和动物水平上的起搏器活性中的敲低和过表达。我们将
结合免疫检测,原位杂交,电生理学,高分辨率成像,钙成像,
和遥测至:( AIM 1)表征抽象,同工型相对表达,细胞表达特异性,
Pootemaker组织中的压电1和压电2通道的亚细胞定位和分离的起搏器
细胞。 (AIM 2)评估压电通道在起搏器拉伸激活电流中的作用,拉伸 -
激活的内在点火速率,起搏器细胞的自动化及其亚阈值钙
活动。 (目标3)。确定压电通道在拉伸激活的电和钙反应中的作用
在完整的起搏器组织中及其在体内正常心脏功能中的作用。完成上面列出的目标
将提供有关起搏器细胞中机制的分子机制的新见解,并将有助于
确定用于检测和治疗相关心律不齐的新目标。我们的结果还将为潜水员提供
工具包确定起搏器翻译背后的多种重要机制伸展为心率
加速度,为我们的实验室开辟了新的途径,以研究受调节的下游信号通路
通过该组织中压电通道的机械激活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudia Marcela Moreno其他文献
Claudia Marcela Moreno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudia Marcela Moreno', 18)}}的其他基金
Molecular mechanisms of mechanosensation in the cardiac pacemaker
心脏起搏器机械感觉的分子机制
- 批准号:
10409004 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Changes in L-type calcium channels during aging in the heart's pacemaker
心脏起搏器衰老过程中L型钙通道的变化
- 批准号:
10170193 - 财政年份:2019
- 资助金额:
$ 38.88万 - 项目类别:
Changes in L-type calcium channels during aging in the heart's pacemaker
心脏起搏器衰老过程中L型钙通道的变化
- 批准号:
10013111 - 财政年份:2019
- 资助金额:
$ 38.88万 - 项目类别:
Changes in L-type calcium channels during aging in the heart's pacemaker
心脏起搏器衰老过程中L型钙通道的变化
- 批准号:
10003436 - 财政年份:2019
- 资助金额:
$ 38.88万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SSRP1/Sp-1转录调控的MFGE8通过SIRT6影响铁死亡在脓毒症急性肾损伤中的机制研究
- 批准号:82302418
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人群mtDNA空间异质性对急性高原反应发病的影响机制研究
- 批准号:42377466
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高甘油三酯通过TLR4/caspase-8影响急性胰腺炎CD4+T细胞程序性死亡的机制研究
- 批准号:82360135
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Targeting Alcohol-Opioid Co-Use Among Young Adults Using a Novel MHealth Intervention
使用新型 MHealth 干预措施针对年轻人中酒精与阿片类药物的同时使用
- 批准号:
10456380 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Music4Pain Network: A research network to advance the study of mechanisms underlying the effects of music and music-based interventions on pain.
Music4Pain Network:一个研究网络,旨在推进音乐和基于音乐的疼痛干预措施的影响机制的研究。
- 批准号:
10764417 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Mechanisms of Trypsin Activation in Pancreatitis
胰腺炎中胰蛋白酶激活的机制
- 批准号:
10587286 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别: