Molecular mechanisms of mechanosensation in the cardiac pacemaker
心脏起搏器机械感觉的分子机制
基本信息
- 批准号:10670328
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAffectAnimalsAreaArrhythmiaBloodCalciumCalcium OscillationsCardiacCardiac pacemakerCellsCharacteristicsChemicalsContractsCouplingDependenceDevelopmentElectrophysiology (science)EnvironmentFeedbackFiberGenerationsGoalsHeartHeart AtriumHeart RateImageIn Situ HybridizationIn VitroKnockout MiceLaboratoriesLungMechanicsMediatingModelingMolecularMusOrganPacemakersPerformancePhysiologicalPhysiological ProcessesPiezo 1 ion channelPiezo 2 ion channelPiezo ion channelsPositioning AttributePreparationProcessProprioceptionProtein IsoformsPumpReflex actionResearchRight atrial structureRoleSignal PathwaySignal TransductionSpace PerceptionSpecificityStretchingTelemetryTestingTissuesToxinTranslationsVenouscell typeexperimental studyheart electrical activityheart functionhigh resolution imagingin vivoinnovationinsightknock-downmechanical forcemechanotransductionmouse modelnodal myocytenoveloverexpressionpreventresponsesuperresolution imagingtoolultrasoundvoltage
项目摘要
Project Summary/Abstract
In this project, we will test the overall hypothesis that PIEZO channels mediate mechanosensation in the cardiac
pacemaker and that they are essential players on the heart rate acceleration evoked by mechanical stretch. We
will leverage our expertise in the study of the cardiac pacemaker to enter into two new research fields for our
laboratory: mechanosensation and mechano-electrical coupling. The heart is one of the most mechanically active
organs in the body. Besides being a remarkably effective pump, the heart senses its mechanical environment
and adjusts its performance to match the physiological demands. In a mechanism known as the “Bainbridge
Reflex”, the cardiac pacemaker responds to the stretch induced by the increase in venous return with an
acceleration of its pace to empty the heart effectively. To sense these constant changes in stretch, the
pacemaker is equipped with stretch-activated channels, however, their molecular identity remains elusive.
PIEZO channels mediate mechanotransduction in every cell type where its expression has been detected so far.
Despite being expressed in the pacemaker and being considered the candidate to mediate pacemaker
mechanotransduction, the role of PIEZO channels in this tissue has not been explored yet. This proposal will
directly test the role of PIEZO channels in the stretch-activated response of the cardiac pacemaker.
Our innovative approach includes the development of pacemaker-specific mouse lines to test the effect of PIEZO
knockdown and overexpression in the pacemaker activity at the cellular, tissue, and animal level. We will
combine immunodetection, in-situ hybridization, electrophysiology, high-resolution imaging, calcium imaging,
and telemetry to: (Aim 1) Characterize the abundance, isoform relative expression, cell-expression specificity,
and subcellular localization of Piezo1 and Piezo2 channels in the pacemaker tissue and isolated pacemaker
cells. (Aim 2) Evaluate the role of PIEZO channels in the pacemaker stretch-activated current, the stretch-
activated increase in intrinsic firing rate, the automaticity of pacemaker cells, and in their subthreshold calcium
activity. (Aim 3). Determine the role of PIEZO channels in the stretch-activated electrical and calcium responses
in the intact pacemaker tissue and their role in normal heart function in vivo. Completing the aims listed above
will provide new insight into the molecular mechanisms of mechanotransduction in pacemaker cells and will help
to identify novel targets for detecting and treating associated arrhythmias. Our results will also provide a diverse
toolkit to identify multiple important mechanisms behind the translation of pacemaker stretch into heart rate
acceleration, opening new avenues for our lab to study the downstream signaling pathways that are regulated
by the mechanical activation of PIEZO channels in this tissue.
项目概要/摘要
在这个项目中,我们将测试 PIEZO 通道介导心脏机械感觉的总体假设
起搏器,它们是机械拉伸引起的心率加速的重要参与者。
将利用我们在心脏起搏器研究方面的专业知识,进入两个新的研究领域
实验室:机械感觉和机电耦合 心脏是机械活动最活跃的地方之一。
心脏除了是一个非常有效的泵之外,还能感知其机械环境。
并通过称为“Bainbridge”的机制调整其性能以满足生理需求。
“反射”,心脏起搏器对静脉回流增加引起的拉伸做出反应
加速其步伐以有效地清空心脏,以感受这些不断变化的伸展。
起搏器配备有拉伸激活通道,然而,它们的分子身份仍然难以捉摸。
PIEZO 通道在迄今为止已检测到其表达的每种细胞类型中介导机械转导。
尽管在起搏器中表达并被认为是调解起搏器的候选者
机械转导,PIEZO 通道在该组织中的作用尚未被探索。
直接测试 PIEZO 通道在心脏起搏器拉伸激活响应中的作用。
我们的创新方法包括开发起搏器特异性小鼠品系来测试 PIEZO 的效果
我们将在细胞、组织和动物水平上抑制和过度表达起搏器活性。
结合免疫检测、原位杂交、电生理学、高分辨率成像、钙成像、
和遥测:(目标 1)表征丰度、亚型相对表达、细胞表达特异性、
起搏器组织和离体起搏器中 Piezo1 和 Piezo2 通道的亚细胞定位
(目标 2)评估 PIEZO 通道在起搏器拉伸激活电流(拉伸激活电流)中的作用。
激活内在放电率、起搏细胞的自动性及其阈下钙的增加
确定 PIEZO 通道在拉伸激活的电和钙反应中的作用。
完整的起搏器组织及其在体内正常心脏功能中的作用。
将为起搏细胞中机械转导的分子机制提供新的见解,并将有助于
确定检测和治疗相关心律失常的新靶标,我们的结果也将提供多样化的结果。
用于识别起搏器伸展转化为心率背后的多种重要机制的工具包
加速,为我们实验室研究受监管的下游信号通路开辟新途径
通过该组织中压电通道的机械激活。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claudia Marcela Moreno其他文献
Claudia Marcela Moreno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claudia Marcela Moreno', 18)}}的其他基金
Molecular mechanisms of mechanosensation in the cardiac pacemaker
心脏起搏器机械感觉的分子机制
- 批准号:
10409004 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Changes in L-type calcium channels during aging in the heart's pacemaker
心脏起搏器衰老过程中L型钙通道的变化
- 批准号:
10170193 - 财政年份:2019
- 资助金额:
$ 38.88万 - 项目类别:
Changes in L-type calcium channels during aging in the heart's pacemaker
心脏起搏器衰老过程中L型钙通道的变化
- 批准号:
10013111 - 财政年份:2019
- 资助金额:
$ 38.88万 - 项目类别:
Changes in L-type calcium channels during aging in the heart's pacemaker
心脏起搏器衰老过程中L型钙通道的变化
- 批准号:
10003436 - 财政年份:2019
- 资助金额:
$ 38.88万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
蜗牛粘液糖胺聚糖影响中性粒细胞粘附和迁移在治疗急性呼吸窘迫综合征中的作用研究
- 批准号:82360025
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
利多卡因通过Nav1.8通道调控白介素31表达影响特应性皮炎急性瘙痒的机制
- 批准号:82373490
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
eIF2α/ATF3通路调控CPT1α影响线粒体稳态在急性肾损伤慢性化中的机制研究
- 批准号:82300838
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超急性期免疫表征影响脑卒中预后研究
- 批准号:
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:
相似海外基金
The Role of Dopamine in Cognitive Resilience to Alzheimer's Disease Pathology in Healthy Older Adults
多巴胺在健康老年人阿尔茨海默氏病病理认知弹性中的作用
- 批准号:
10678125 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Effects of Aging on Neuronal Lysosomal Damage Responses Driven by CMT2B-linked Rab7
衰老对 CMT2B 相关 Rab7 驱动的神经元溶酶体损伤反应的影响
- 批准号:
10678789 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Prevention of intracellular infection in diabetic wounds by commensal Staphylococcus epidermidis
共生表皮葡萄球菌预防糖尿病伤口细胞内感染
- 批准号:
10679628 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Energizing and Protecting Axons Through Metabolic Coupling to Schwann Cells
通过与雪旺细胞的代谢耦合来激活和保护轴突
- 批准号:
10647707 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别: