Nucleation and Dissolution Mechanism Underlying ALS/FTLD-linked FUS Condensates
ALS/FTLD 连接的 FUS 缩合物的成核和溶解机制
基本信息
- 批准号:10668388
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2024-11-15
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAmyotrophic Lateral SclerosisAutomobile DrivingAwardBiochemicalBiological AssayBuffersCell NucleusCellsCellular StressCessation of lifeCollaborationsCommunicationComplexCritical ThinkingCytosolDependenceDevelopmentDiseaseDisease ProgressionDoctor of PhilosophyElectrostaticsExhibitsFrontotemporal DementiaGelGenetic TranscriptionGoalsHydrophobicityIn VitroLeadLengthLettersLinkLiquid substanceMaintenanceMeasuresMentorsMessenger RNAMolecularMotor NeuronsMutateMutationNeurodegenerative DisordersNuclearNuclear RNAPancreatic ribonucleasePathologicPatientsPatternPhasePhysical condensationPlayPositioning AttributePostdoctoral FellowProcessPropertyProteinsRNARNA BindingRNA SequencesRNA SplicingRNA metabolismRNA-Binding ProteinsReagentReportingResearchRoleSeriesSodium ChlorideSolidStressStructureTechniquesTestingTherapeuticTranslationsViscosityage relatedbiological adaptation to stresscareercellular imagingcytotoxicexperimental studyfrontotemporal lobar dementia amyotrophic lateral sclerosisfused in sarcomaimprovedin vivoinsightliquid dynamicsmRNA Exportmonomermotor disordermutantpreventsingle moleculeskillssymposiumundergraduate student
项目摘要
PROJECT SUMMARY
Fused in sarcoma (FUS) is an RNA binding protein which can readily undergo liquid-liquid phase separation
(LLPS) to perform its proper functions in the nucleus. Mutations in FUS and/or cellular stress lead to
mislocalization of FUS from the nucleus to the cytosol and aberrant LLPS, leading to the formation of toxic
aggregates that are more gel-like or solid-like than wild type (WT) FUS whose condensates have dynamic liquid-
like properties. Toxic aggregates of mutant FUS is a hallmark of age-dependent neurodegenerative diseases
such as amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD) which are characterized
by a progressive loss of motor neurons and eventual death in patients. I propose to identify mechanisms
underlying the formation of cytotoxic FUS aggregates which contribute to the death of motor neurons and disease
progression. Specifically, I propose to utilize single molecule techniques to investigate the nucleation and
dissolution mechanisms underlying FUS aggregation and the underlying interactions driving FUS LLPS which
become perturbed in disease-linked mutants. Aim 1 will quantify the oligomerization status of FUS in cells under
WT, stressed and mutant conditions using single molecule pulldown (SiMPull) analysis. This aim will test the
impact of multiple ALS/FTLD-linked FUS mutations multiple forms of stress on FUS oligomerization in a
localization-dependent manner. Aim 2 will utilize in vitro nucleation and dissolution assays to compare the
nucleation pattern of WT versus mutant FUS oligomers and will identify the mechanism of action underlying FUS
condensate assembly. In addition, aim 2 will test the interactions necessary to maintain FUS condensates using
dissolution assays with a panel of various dissolving agents that will perturb hydrophobic, electrostatic, and RNA
interactions, to investigate the effects of loss of respective interactions on FUS oligomers. Aim 3 will investigate
the role of FUS-RNA interactions in FUS nucleation by determining the RNA sequences, lengths, and structures
necessary for nucleating and maintaining FUS condensates, and will identify interactions that are disrupted in
ALS/FTLD-linked mutant FUS condensates. This proposal is strengthened by contributions from three
collaborators (see support letters), all of whom are experts on ALS, LLPS, or can provide technical support. The
activities planned under this award including collaborations, professional development opportunities, engaging
and participating in scientific conferences, mentoring undergraduates in the lab, and improving scientific
communication and critical thinking skills will allow me to successfully complete my PhD and prepare me for a
postdoctoral position and later, to attain a career in academia. This proposal will allow me to pursue my long-
term career goal and will utilize single molecule techniques to gain a better mechanistic understanding of
ALS/FTLD-linked FUS mutants to prevent disease progression.
项目摘要
在肉瘤中融合(FUS)是一种RNA结合蛋白,可以容易地进行液态液相分离
(LLP)在细胞核中执行其适当的功能。 FUS和/或细胞应激中的突变导致
从细胞核到细胞质和异常LLP的FUS错误定位,导致有毒的形成
比野生型(wt)的凝胶状的聚集体,其冷凝水具有动态液体 -
喜欢属性。突变FUS的有毒骨料是年龄依赖性神经退行性疾病的标志
例如肌萎缩性侧索硬化症(ALS)和额颞叶痴呆症(FTLD)的特征
通过运动神经元的进行性丧失和患者最终死亡。我建议确定机制
基本的细胞毒性FUS聚集体的形成,有助于运动神经元和疾病的死亡
进展。具体而言,我建议利用单分子技术研究成核和
溶解机制的基础机器人的固定机制和驱动FUS LLP的潜在相互作用,这些相互作用
在疾病连接的突变体中受到干扰。 AIM 1将量化细胞中FUS的寡聚状态
WT,使用单分子下拉(SIMPULL)分析,应力和突变条件。这个目标将测试
多种ALS/FTLD连接的FUS突变的影响多种形式的应力对A中的FUS寡聚化的影响
定位依赖性方式。 AIM 2将利用体外成核和溶解测定来比较
WT与突变型FUS低聚物的成核模式,将确定FUS基础作用机理
冷凝水组件。此外,AIM 2将测试使用使用FUS冷凝物所需的相互作用
用各种溶解剂的面板溶解测定,这些溶解剂会扰动疏水,静电和RNA
相互作用,以研究各自相互作用对FUS低聚物的影响。 AIM 3将调查
通过确定RNA序列,长度和结构,FUS-RNA相互作用在FUS成核中的作用
成核和维护FUS冷凝物所必需的,并将确定被破坏的相互作用
ALS/FTLD连接的突变型FUS冷凝物。三个提议得到了加强
合作者(请参阅支持信),他们都是ALS,LLP的专家,或者可以提供技术支持。这
根据该奖项计划的活动,包括合作,专业发展机会,参与
并参加科学会议,指导实验室的本科生并改善科学
沟通和批判性思维能力将使我能够成功完成博士学位,并为我做好准备
博士后职位,后来是在学术界的职业。该建议将使我能够追求我的长期
任期职业目标,并将利用单分子技术来获得更好的机械理解
ALS/FTLD连接的FUS突变体可预防疾病进展。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nucleation and dissolution mechanism underlying amyotrophic lateral sclerosis/frontotemporal lobar dementia-linked fused in sarcoma condensates.
- DOI:10.1016/j.isci.2023.106537
- 发表时间:2023-04-21
- 期刊:
- 影响因子:5.8
- 作者:Djaja, Nathalie A.;Chang, Matthew T.;Morris, Freya R.;Morris, Vivian M.;Ganser, Laura R.;Myong, Sua
- 通讯作者:Myong, Sua
Protocol for single-molecule pull-down of fluorescently tagged oligomers from cell lysates.
- DOI:10.1016/j.xpro.2023.102716
- 发表时间:2023-12-15
- 期刊:
- 影响因子:0
- 作者:Djaja, Nathalie;Myong, Sua
- 通讯作者:Myong, Sua
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathalie Ashley Djaja其他文献
Nathalie Ashley Djaja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathalie Ashley Djaja', 18)}}的其他基金
Nucleation and Dissolution Mechanism Underlying ALS/FTLD-linked FUS Condensates
ALS/FTLD 连接的 FUS 缩合物的成核和溶解机制
- 批准号:
10474309 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
Nucleation and Dissolution Mechanism Underlying ALS/FTLD-linked FUS Condensates
ALS/FTLD 连接的 FUS 缩合物的成核和溶解机制
- 批准号:
10313311 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
相似国自然基金
无义介导的mRNA降解途径参与家族性肌萎缩侧索硬化症神经元损伤的机制及干预研究
- 批准号:82371871
- 批准年份:2023
- 资助金额:45 万元
- 项目类别:面上项目
基于新型深度学习算法和多组学研究策略鉴定非编码区剪接突变在肌萎缩侧索硬化症中的分子机制
- 批准号:82371878
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
泛素样蛋白在肌萎缩侧索硬化症发病过程中的作用和机制研究
- 批准号:82230038
- 批准年份:2022
- 资助金额:261 万元
- 项目类别:重点项目
神经先天免疫系统调控肌萎缩侧索硬化症微卫星重复扩增相关二肽重复蛋白清除的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
PCDHA9基因突变介导的肌萎缩侧索硬化症分子机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
BLRD Research Career Scientist Award Application
BLRD 研究职业科学家奖申请
- 批准号:
10701238 - 财政年份:2023
- 资助金额:
$ 4.77万 - 项目类别: