An integrative omics approach to investigate gene-environment interaction in colorectal cancer risk
研究结直肠癌风险中基因与环境相互作用的综合组学方法
基本信息
- 批准号:10668779
- 负责人:
- 金额:$ 97.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAgeAge of OnsetAlcoholsAtlasesBiologicalBiological MarkersBiological ProcessBiopsyC-reactive proteinCancer EtiologyCellsCessation of lifeChromatinChromosome MappingChronicClinicalClinical DataColorectalColorectal CancerCommunitiesComplexDataData SetDatabasesDevelopmentDiabetes MellitusDietDietary FactorsDiseaseDrug usageEnvironmentEnvironmental ExposureEnvironmental Risk FactorEthnic PopulationGene ExpressionGene Expression RegulationGenesGeneticGenetic RiskGenetic VariationGenetic studyGenomeGenomicsGlucoseGuide preventionIndividualInflammationInsulinInterleukin-6InterventionLife StyleLinkMalignant NeoplasmsMeasuresMetabolicMethodsMucous MembraneMultiomic DataObesityParticipantProcessResourcesRiskRisk FactorsSamplingScanningSmokingStatistical MethodsStressTechnologyTestingTissuesTrainingTranscriptional RegulationTranslatingTranslationsTumor SubtypeUntranslated RNAVariantbiobankcell typecohortcolorectal cancer preventioncolorectal cancer riskcomputerized toolsdata integrationdeep learningdeep learning modelepidemiologic dataethnic diversityfunctional genomicsgene discoverygene environment interactiongenetic epidemiologygenetic risk factorgenetic variantgenome-widehigh dimensionalityimprovedindividualized preventioninflammatory markerinnovationinsightinstrumentinterestlifestyle interventionmodifiable riskmultidisciplinarymultimodalitymultiple omicsnovelpersonalized screeningpredictive markerpreventive interventionracial diversityracial populationrisk predictionrisk prediction modelrisk variantsexsingle cell technologystudy populationtranslational potential
项目摘要
PROJECT SUMMARY/ABSTRACT
Colorectal cancer (CRC) remains one of the leading causes of cancer-related deaths around the world.
Many environmental risk factors and over 200 genetic risk variants have been identified for this complex,
multifactorial disease. However, despite the strong biological rationale for the importance and abundance of
gene-environment (GxE) interactions, the extent to which environmental risk factors (broadly defined here as
lifestyle, diet, obesity, drug use and intermediate biomarkers) modulate genetic risk factors is poorly understood.
To achieve the promise of precision prevention, we urgently need to gain a deeper understanding of GxE
interactions in CRC risk. Understanding which modifiable risk factors modulate genetic risk, which is fixed,
provides biological insights and actionable targets for new prevention intervention strategies. To accelerate the
discovery of GxE interactions in CRC risk and to take an important next step towards translation, we propose a
comprehensive innovative approach that combines single-cell multi-omics data, individual-level harmonized
epidemiological and clinical data, and genome-wide data from large, well-characterized, diverse study
populations, with novel computational and statistical approaches. Dramatic improvements in single-cell
multimodal omics technologies, combined with new computational tools based on powerful deep-learning
modeling approaches now allow us to predict the impact of genetic variants on gene regulation in a cell-type-
specific holistic manner. Because simultaneously measured single-cell gene expression (scRNA-seq) and
chromatin accessibility (scATAC-seq) data for normal colorectal mucosa tissue is lacking for racially and ethnically
diverse samples with detailed assessment of environmental risk factors, we propose in Aim 1 to generate such
data for 50 individuals. This resource, together with other single cell multi-omics compendia for colorectal tissue
(like HTAN), will be leveraged to develop functional prediction scores for genetic variants across the genome. In
Aim 2, we will use these functional prediction scores to boost statistical power for discovery of novel GxE
interactions. We will perform genome-wide GxE scans in over 230,000 racially and ethnically diverse CRC cases
and controls across key environmental risk factors, including obesity, diabetes, smoking, alcohol, drug use,
dietary factors and intermediate biomarkers linked to metabolic dysregulation and chronic inflammation. To
expand the number of key risk factors we can evaluate, we will utilize existing genetic instruments. In Aim 3, we
will comprehensively characterize and translate GxE interactions. To do so, we will stratify GxE findings by
clinical factors, including age of onset, racial and ethnic group, sex, and tumor subtypes. Additionally, we will
incorporate GxE interactions and genetically predicted biomarkers in a comprehensive trans-ancestral risk
prediction model to improve prediction and provide actionable information to reduce the burden of CRC. Our
community advisors have stressed the importance of including the interplay between genetic and environmental
risk factors in risk prediction modeling to enhance the acceptance of risk prediction models in the community.
项目概要/摘要
结直肠癌(CRC)仍然是世界各地癌症相关死亡的主要原因之一。
已确定该复合物的许多环境风险因素和 200 多种遗传风险变异,
多因素疾病。然而,尽管有强有力的生物学原理证明了
基因-环境(GxE)相互作用,环境风险因素(此处广泛定义为
生活方式、饮食、肥胖、药物使用和中间生物标志物)调节遗传风险因素的了解还很少。
为了实现精准预防的承诺,我们迫切需要对GxE有更深入的了解
CRC 风险中的相互作用。了解哪些可改变的风险因素调节遗传风险,这是固定的,
为新的预防干预策略提供生物学见解和可行的目标。为加速
发现 CRC 风险中的 GxE 相互作用,并在转化方面迈出重要的下一步,我们提出了
综合创新方法,结合单细胞多组学数据,个体水平协调
来自大型、特征明确、多样化研究的流行病学和临床数据以及全基因组数据
人口,采用新颖的计算和统计方法。单细胞的显着改进
多模态组学技术,与基于强大深度学习的新计算工具相结合
建模方法现在使我们能够预测遗传变异对细胞类型中基因调控的影响
具体整体方式。因为同时测量单细胞基因表达 (scRNA-seq) 和
缺乏种族和民族的正常结直肠粘膜组织的染色质可及性 (scATAC-seq) 数据
对环境风险因素进行详细评估的多样化样本,我们在目标 1 中建议生成这样的样本
50 个人的数据。该资源以及其他结直肠组织单细胞多组学概要
(如 HTAN),将被用来开发整个基因组遗传变异的功能预测分数。在
目标 2,我们将使用这些功能预测分数来提高发现新型 GxE 的统计能力
互动。我们将对超过 230,000 个不同种族和民族的 CRC 病例进行全基因组 GxE 扫描
并控制关键环境风险因素,包括肥胖、糖尿病、吸烟、酗酒、吸毒、
饮食因素和中间生物标志物与代谢失调和慢性炎症有关。到
为了扩大我们可以评估的关键风险因素的数量,我们将利用现有的遗传仪器。在目标 3 中,我们
将全面描述和转化 GxE 交互。为此,我们将按以下方式对 GxE 调查结果进行分层:
临床因素,包括发病年龄、种族和民族、性别和肿瘤亚型。此外,我们将
将 GxE 相互作用和基因预测的生物标志物纳入综合跨祖先风险
预测模型,以改进预测并提供可操作的信息以减轻 CRC 的负担。我们的
社区顾问强调了遗传和环境之间相互作用的重要性
风险预测模型中的风险因素,以提高社会对风险预测模型的接受度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William JAMES GAUDERMAN其他文献
William JAMES GAUDERMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William JAMES GAUDERMAN', 18)}}的其他基金
Integration of Omic Data in the Analysis of Gene x Environment Interaction
组学数据在基因 x 环境相互作用分析中的整合
- 批准号:
10707459 - 财政年份:2016
- 资助金额:
$ 97.31万 - 项目类别:
Statistical Methods for Integrative Genomics in Cancer
癌症综合基因组学的统计方法
- 批准号:
10207523 - 财政年份:2016
- 资助金额:
$ 97.31万 - 项目类别:
Statistical Methods for Integrative Genomics in Cancer
癌症综合基因组学的统计方法
- 批准号:
10411238 - 财政年份:2016
- 资助金额:
$ 97.31万 - 项目类别:
Using functional genomics to inform gene environment interactions for colorectal cancer
使用功能基因组学来了解结直肠癌的基因环境相互作用
- 批准号:
10602907 - 财政年份:2016
- 资助金额:
$ 97.31万 - 项目类别:
Statistical Methods for Integrative Genomics in Cancer
癌症综合基因组学的统计方法
- 批准号:
10707446 - 财政年份:2016
- 资助金额:
$ 97.31万 - 项目类别:
Statistical Methods for Integrative Genomics in Cancer
癌症综合基因组学的统计方法
- 批准号:
9768378 - 财政年份:2016
- 资助金额:
$ 97.31万 - 项目类别:
Integration of Omic Data in the Analysis of Gene x Environment Interaction
组学数据在基因 x 环境相互作用分析中的整合
- 批准号:
10411241 - 财政年份:2016
- 资助金额:
$ 97.31万 - 项目类别:
Air pollution effects on asthma and lung function in Hispanic children
空气污染对西班牙裔儿童哮喘和肺功能的影响
- 批准号:
8686858 - 财政年份:2013
- 资助金额:
$ 97.31万 - 项目类别:
相似国自然基金
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
- 批准号:82301190
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
晶状体mtDNA氧化损伤修复与线粒体自噬的空间差异及其调控干预在年龄相关性白内障发病中的作用
- 批准号:82171038
- 批准年份:2021
- 资助金额:54 万元
- 项目类别:面上项目
FoxO3a通路抑制在年龄相关性白内障发病机制中的调控作用
- 批准号:82070942
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
ODRP泛素化经LECs外泌体释放和自噬降解调控年龄相关性白内障的发病
- 批准号:81974129
- 批准年份:2019
- 资助金额:57 万元
- 项目类别:面上项目
肠道微生态参与年龄相关性黄斑变性的发病机制及固本清目方的干预作用
- 批准号:81973912
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Trypsin Activation in Pancreatitis
胰腺炎中胰蛋白酶激活的机制
- 批准号:
10587286 - 财政年份:2023
- 资助金额:
$ 97.31万 - 项目类别:
Sleep and Temperature Disturbance as risk factors for Alzheimer's Disease in Down Syndrome: a Longitudinal Study
睡眠和体温紊乱是唐氏综合症中阿尔茨海默病的危险因素:一项纵向研究
- 批准号:
10591135 - 财政年份:2023
- 资助金额:
$ 97.31万 - 项目类别:
Measuring the Impact of the Value Flower and Unobserved Heterogeneity on the Cost Effectiveness and Use of Novel Treatments for Alzheimer's Disease and Related Dementias
衡量价值花和未观察到的异质性对阿尔茨海默病和相关痴呆症新疗法的成本效益和使用的影响
- 批准号:
10658457 - 财政年份:2023
- 资助金额:
$ 97.31万 - 项目类别:
DNA methylation signatures of Alzheimer's disease in aged astrocytes
老年星形胶质细胞中阿尔茨海默病的 DNA 甲基化特征
- 批准号:
10807864 - 财政年份:2023
- 资助金额:
$ 97.31万 - 项目类别:
The Role of Viral Exposure and Age in Alzheimer's Disease Progression
病毒暴露和年龄在阿尔茨海默病进展中的作用
- 批准号:
10717223 - 财政年份:2023
- 资助金额:
$ 97.31万 - 项目类别: