Dual-Mode Plasmonic Biosensors using Bioenabled Nanomaterials
使用生物纳米材料的双模式等离子体生物传感器
基本信息
- 批准号:8886469
- 负责人:
- 金额:$ 7.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-15 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAirAlgaeAntibodiesAntigensBindingBiosensing TechniquesBiosensorCellsChemicalsCouplingDetectionDeveloping CountriesDevicesDiagnosisDiagnosticDiatomsDiseaseEnsureGeometryGlassGoatHybridsImageImmunoglobulin GLabelLightLow incomeMapsMeasuresMethodsMolecularMolecular ProbesMorphologyMusNanostructuresOpticsOregonPhysiciansProcessProtocols documentationRefractive IndicesResearchResolutionShapesSignal TransductionSilicon DioxideSilverSpecificitySpectrum AnalysisStructureSurfaceTechniquesUniversitiesbasechemical reactionclinically relevantcostcost effectiveelectric fieldimprovedin vivomeetingsnanonanofabricationnanomaterialsnanoparticlenanoscaleoptical imagingoptical sensorphotonicsplasmonicspoint of carepublic health relevancescreeningsensortwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): Plasmonic biosensors have greatly overcome the limitations of conventional optical sensors in terms of sensitivity, tunability, photo-stability, ad in vivo applicability. However, the concerns with average sensitivity, detection specificity, surface functionalities, and device expense still cannot meet the application requirement of point-of-care and personal diagnosis. In this research, the PIs at Oregon State University propose to explore dual-mode plasmonic biosensors using bioenabled nanomaterials --- diatom biosilica, with active surface-functionalities as affordable and eco-friendly integration platforms of Ag nanoparticles for label-free detection of biomolecules. Diatoms are single-celled algae that make silica shells or frustules with intricate nanoscale features imbedded within periodic two-dimensional pore arrays. The essence of this research is addressed by exploration of the unique Fano-resonant hybrid modes between silver nanoparticles and diatom frustules, which leads to high-Q resonant peaks and enhanced local electric field that can significantly enhance the light-matter interactions. Dual-mode plasmon sensing mechanisms, including surface-enhanced Raman scattering (SERS) and refractive-index (RI) sensing will be simultaneously implemented on the plasmonic-biosilica nanostructures to obtain quantitative biosensing with structural resolution of the biomolecules. In addition, the nano-corrugated surface of diatom frustules will help to increase the possibility of capturing various biomolecules. Other exclusive advantages include affordable cost and eco- friendly fabrication of the sensor chips that are completely free of expensive photolithography and other nanofabrication processes, and easy expandability to sensor arrays for high throughput diagnostics, which can provide greater accessibility for large-scale screening. Such unique plasmonic-biosilica sensors with unprecedented figure-of-merits can be used as disposable biosensors to acquire clinically relevant information for the physician and clinician in point-of-care, personal diagnosis, as well as for disease detection in low- income developing countries.
描述(由申请人提供):等离激元生物传感器极大地克服了传统光学传感器在灵敏度、可调谐性、光稳定性和体内适用性方面的局限性,但存在平均灵敏度、检测特异性、表面功能和设备的问题。费用仍然无法满足现场护理和个人诊断的应用要求。在这项研究中,俄勒冈州立大学的 PI 提出探索使用生物启用的双模式等离子体生物传感器。纳米材料 --- 硅藻生物二氧化硅,具有活性表面功能,作为银纳米粒子的经济且环保的集成平台,用于无标记检测生物分子硅藻是单细胞藻类,可形成嵌入周期性特征的二氧化硅壳或硅藻壳。这项研究的本质是通过探索银纳米粒子和硅藻之间独特的法诺共振混合模式来解决。硅藻壳,这会导致高 Q 共振峰和增强的局部电场,从而显着增强双模等离子体传感机制,包括表面增强拉曼散射(SERS)和折射率(RI)传感。同时在等离子体生物硅纳米结构上实现,以获得具有生物分子结构分辨率的定量生物传感此外,硅藻壳的纳米波纹表面也将有所帮助。其他独特的优势包括传感器芯片的成本低廉且环保,完全无需昂贵的光刻和其他纳米制造工艺,以及易于扩展的传感器阵列以实现高通量诊断。这种独特的等离子体生物硅传感器具有前所未有的品质因数,可用作一次性生物传感器,为医生和临床医生在护理点、个人中获取临床相关信息。诊断以及低收入发展中国家的疾病检测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan X Wang其他文献
Alan X Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan X Wang', 18)}}的其他基金
Toward Point-of-Care Drug Testing: A New Paradigm for On-Chip Chromatography Coupled with Surface-Enhanced Raman Scattering
迈向即时药物测试:片上色谱与表面增强拉曼散射相结合的新范例
- 批准号:
9298363 - 财政年份:2017
- 资助金额:
$ 7.32万 - 项目类别:
Planar Lightwave Circuit based Surface Enhanced Raman Scattering Spectrometer wit
基于平面光波电路的表面增强拉曼散射光谱仪
- 批准号:
8057145 - 财政年份:2010
- 资助金额:
$ 7.32万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 7.32万 - 项目类别:
Volumetric analysis of epithelial morphogenesis with high spatiotemporal resolution
高时空分辨率上皮形态发生的体积分析
- 批准号:
10586534 - 财政年份:2023
- 资助金额:
$ 7.32万 - 项目类别:
Programmable DNA Nanostructures as Biomedical and Structural Scaffolds
可编程 DNA 纳米结构作为生物医学和结构支架
- 批准号:
10711302 - 财政年份:2023
- 资助金额:
$ 7.32万 - 项目类别:
Cell Intrinsic and Extrinsic Factors Driving Maturation in Human PSC-derived Neurons
驱动人 PSC 衍生神经元成熟的细胞内在和外在因素
- 批准号:
10736603 - 财政年份:2023
- 资助金额:
$ 7.32万 - 项目类别: