Investigating the molecular mechanisms of growth in GNAS mutant pancreatic cancer.
研究 GNAS 突变型胰腺癌生长的分子机制。
基本信息
- 批准号:10666643
- 负责人:
- 金额:$ 36.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:Animal Cancer ModelAnimalsBiochemical PathwayBioenergeticsBiologyBranched-Chain Amino AcidsCREB1 geneCancer EtiologyCell LineCellsCessation of lifeCitric Acid CycleColonComplexCyclic AMPCyclic AMP-Dependent Protein KinasesDataDependenceDetectionDiseaseDoxycyclineEnzymesFatty AcidsFoundationsGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGene ExpressionGenesGeneticGenetic EngineeringGenetic TranscriptionGenetically Engineered MouseGenotypeGnas proteinGoalsGrowthHeterogeneityHistologicHumanIntestinesKRAS oncogenesisKRAS2 geneLabelLesionLipidsMaintenanceMalignant NeoplasmsMalignant neoplasm of pancreasMediatingMetabolicMetabolic PathwayMethodsMicroscopyMitochondriaModelingMolecularMolecular ProfilingMucinousMucinous NeoplasmMultienzyme ComplexesMusMutateMutationNADHNeoplasmsNuclear TranslocationOncogenicOrganoidsOther GeneticsOxidative PhosphorylationOxidoreductasePancreasPancreatic Ductal AdenocarcinomaPapillaryPathway interactionsPhosphorylationPituitary GlandProliferatingProtein IsoformsPublishingRecurrenceRegulationResearchRespirationRoleSamplingSeriesSignal TransductionSourceSpecimenStomachSystemTP53 geneTranscription CoactivatorTranscriptional ActivationTumor Suppressor ProteinsUnited StatesUp-RegulationWorkbiliary tractcancer cellclinically relevantfatty acid oxidationgain of function mutationimprovedinhibitormetabolic phenotypemouse modelmutantnovelpancreatic cancer patientspancreatic neoplasmpatient derived xenograft modelpre-clinicalpreventprogramsprotein activationrespiratoryrestraintsalt-inducible kinasetooltranscriptomicstreatment responsetreatment strategytumortumor growthtumor progression
项目摘要
PROJECT SUMMARY
Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer death in the United States with
five-year survival after detection is less than 10%. The subset of PDA arises from Intraductal papillary mucinous
neoplasm (IPMNs) precursor lesions are distinguished by recurrent activating mutations in GNAS, that encodes
G-protein Gαs, and induces cyclic-AMP (cAMP) signaling. GNAS is mutationally activated and amplified
pancreatic and many other human tumors, yet its oncogenic functions remain unclear. Therefore, understanding
the function of mutant GNAS will provide disease mechanisms and give opportunities to treat PDA even in their
early stages. To understand the function of oncogenic GNAS we established a doxycycline-tunable mouse model
and showed that mutant GNAS cooperates with oncogenic KRAS to initiate IPMNs that progress to invasive
PDA upon p53 loss. GNAS remains critical for the maintenance of established tumors, via a protein kinase A
(PKA)-dependent network and resulting inhibition of salt-inducible kinases (SIK1-3). We demonstrated that this
network prominently reprograms metabolic pathways which are potential alternative sources of TCA cycle
metabolites, respiratory substrates (NADH) and fatty acid intermediates that can support the growth of GNAS
mutant tumors. Importantly, GNAS-mutant cancer cells are specifically sensitive to the inhibition of these
pathways compared to GNAS-wt tumors. These results establish mutant GNAS as a novel tumor maintenance
driver, uncover the underlying PKA-dependent program, establish SIKs as major tumor suppressors, and
demonstrate unanticipated metabolic heterogeneity fueling subsets of pancreatic cancer. Based on our
published and unpublished supporting data, the overarching goal of this proposal is to understand the roles of
critical downstream targets of GNAS-PKA signaling that control the expression of proliferation and metabolic
genes. Our research will also illuminate how mutant GNAS regulated expression of a keto dehydrogenase
generate biosynthetic and bioenergetic intermediates to support tumor growth. Finally, our study will interrogate
the regulation of respiratory activity and its requirement in GNAS mutant pancreatic cancer. This study will
leverage advanced methods and unique tools, including global transcriptomic analysis and isotopomer-based
metabolic profiling in genetically defined mouse and human organoid systems, preclinical pancreatic cancer
animal models, relevant patient-derived xenograft systems and primary samples. Our research will provide
understanding of the unique biology of mutant GNAS and points out targetable vulnerabilities in genetic subsets
of pancreatic tumors.
项目概要
胰腺导管腺癌 (PDA) 是美国第四大癌症死亡原因
检测后五年生存率低于 10% PDA 源自导管内乳头状粘液性病变。
肿瘤 (IPMN) 前驱病变的特征是 GNAS 中反复激活的突变,编码
G 蛋白 Gαs,并诱导环 AMP (cAMP) 信号传导被突变激活和放大。
胰腺癌和许多其他人类肿瘤,但其致癌功能仍不清楚。
突变 GNAS 的功能将提供疾病机制,并为治疗 PDA 提供机会,即使在其
为了了解致癌 GNAS 的功能,我们建立了强力霉素可调小鼠模型。
并表明突变的 GNAS 与致癌 KRAS 合作启动 IPMN,从而进展为侵袭性
p53 丢失后的 PDA 对于通过蛋白激酶 A 维持已形成的肿瘤仍然至关重要。
(PKA) 依赖性网络以及由此产生的盐诱导激酶 (SIK1-3) 的抑制。
网络显着地重新编程代谢途径,这是 TCA 循环的潜在替代来源
可支持 GNAS 生长的代谢物、呼吸底物 (NADH) 和脂肪酸中间体
重要的是,GNAS 突变的癌细胞对这些物质的抑制特别敏感。
与 GNAS-wt 肿瘤相比,这些结果表明突变型 GNAS 是一种新的肿瘤维持方法。
驱动程序,揭示潜在的 PKA 依赖性程序,将 SIK 确立为主要的肿瘤抑制因子,以及
根据我们的研究,证明了意想不到的代谢异质性促进了胰腺癌的发生。
已发表和未发表的支持数据,该提案的总体目标是了解
GNAS-PKA 信号传导的关键下游靶标,控制增殖和代谢的表达
我们的研究还将阐明突变体 GNAS 如何调节酮脱氢酶的表达。
最后,我们的研究将探讨如何产生生物合成和生物能中间体来支持肿瘤生长。
本研究将探讨 GNAS 突变型胰腺癌中呼吸活动的调节及其需求。
利用先进的方法和独特的工具,包括全局转录组分析和基于同位素异构体的分析
基因定义的小鼠和人类类器官系统的代谢分析、临床前胰腺癌
我们的研究将提供动物模型、相关的患者来源的异种移植系统和原始样本。
了解突变 GNAS 的独特生物学并指出遗传子集中的可针对的漏洞
胰腺肿瘤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Krushna Chandra Patra其他文献
Krushna Chandra Patra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Krushna Chandra Patra', 18)}}的其他基金
Investigation of the mitochondrial function in GNAS mutant neoplasms
GNAS 突变肿瘤中线粒体功能的研究
- 批准号:
10605302 - 财政年份:2021
- 资助金额:
$ 36.32万 - 项目类别:
Investigation of the mitochondrial function in GNAS mutant neoplasms
GNAS 突变肿瘤中线粒体功能的研究
- 批准号:
9721914 - 财政年份:2021
- 资助金额:
$ 36.32万 - 项目类别:
Investigation of the mitochondrial function in GNAS mutant neoplasms
GNAS 突变肿瘤中线粒体功能的研究
- 批准号:
10396962 - 财政年份:2021
- 资助金额:
$ 36.32万 - 项目类别:
相似国自然基金
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding CDK1 Function and Cancer Vulnerabilities
了解 CDK1 功能和癌症脆弱性
- 批准号:
10736617 - 财政年份:2023
- 资助金额:
$ 36.32万 - 项目类别:
Opaganib as a Medical Countermeasure for Gastrointestinal Acute Radiation Syndrome
奥帕加尼作为胃肠道急性辐射综合症的医学对策
- 批准号:
10758903 - 财政年份:2023
- 资助金额:
$ 36.32万 - 项目类别:
Targeting MARK2-HDAC signaling to overcome paclitaxel resistance in pancreatic cancer
靶向 MARK2-HDAC 信号传导以克服胰腺癌中的紫杉醇耐药性
- 批准号:
10518249 - 财政年份:2022
- 资助金额:
$ 36.32万 - 项目类别:
Mechanisms and consequences of sickle cell disease-induced cycling in hematopoietic stem cells
镰状细胞病诱导造血干细胞循环的机制和后果
- 批准号:
10464657 - 财政年份:2022
- 资助金额:
$ 36.32万 - 项目类别:
Role of PPM1D and PPM1D mutations in hematopoiesis and response to stress
PPM1D 和 PPM1D 突变在造血和应激反应中的作用
- 批准号:
10678835 - 财政年份:2022
- 资助金额:
$ 36.32万 - 项目类别: