Decoding hyperexcitability in malignant glioma
解码恶性神经胶质瘤的过度兴奋
基本信息
- 批准号:10666662
- 负责人:
- 金额:$ 4.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAccountingActivity CyclesAdult GliomaAffectAutomobile DrivingBackBar CodesBindingBiochemicalBiological AssayBrainBrain NeoplasmsCell CommunicationCell CycleCell ProliferationCell secretionCellsClassificationCollecting CellComplexDataDedicationsDiagnosisDiseaseDisease ProgressionElectrocorticogramElectroencephalographyElectrophysiology (science)ElectroporationEpilepsyEtiologyEventEvolutionFeedsGene ExpressionGenesGlioblastomaGliomaGoalsHumanImageImmunoglobulinsIn VitroIncidenceIndividualInvestigationIsocitrate DehydrogenaseLabelLaboratoriesMaintenanceMalignant - descriptorMalignant GliomaMalignant NeoplasmsMalignant neoplasm of brainMalignant neoplasm of central nervous systemMediatingMethodologyModelingMolecularMolecular ProfilingMusNeuroepithelial, Perineurial, and Schwann Cell NeoplasmNeuronsNeurosciencesOperative Surgical ProceduresPathway interactionsPatientsPostdoctoral FellowPotassiumPotassium ChannelProcessProliferatingPropertyProteinsProteomicsRadiation therapyReportingResearchResearch Project GrantsResearch ProposalsRoleSamplingScientific InquirySecondary toSeizuresSignal PathwaySliceSurvival RateSynapsesSystemTechniquesTherapeuticTimeTransposaseTreatment ProtocolsTumor BiologyTumor PromotionVariantcareerearly onsetexperimental studygain of functionglioma cell linein uteroin vivoinnovationinterestloss of functionmembermigrationmouse modelmultidisciplinarymutantmutational statusneoplastic cellneurodevelopmentneuronal circuitryneuronal tumornovelnovel therapeutic interventionoverexpressionpostsynapticpre-doctoralprecision medicineprogramssingle-cell RNA sequencingstandard of caresurvival outcomesynaptogenesistechnological innovationtranscriptome sequencingtranscriptomicstumortumor progression
项目摘要
PROJECT SUMMARY
Malignant gliomas are a group of high-grade brain neoplasms that represent the most common form of
malignant brain tumors. Current treatment regimens include an amalgamation of surgical, chemotherapeutic
and radiation treatments yet 5-year survival rates following diagnosis of the most lethal glioma variant,
glioblastoma (GBM) remains stagnant at less than 6%. While new scientific inquiries continue to yield novel
disease-driving mechanisms, survival rates have remained unchanged over the past 30 years, highlighting a
need for new therapeutic approaches for these uniformly fatal diseases.
Recent scientific investigations have revealed that malignant gliomas form direct synaptic electrochemical
connections with extratumoral neurons to sustain continued proliferation and migration. The study of this
complex interplay between glioma cells and non-tumor neural cells has launched a new line of scientific inquiry
known as cancer neuroscience. Given the existence of these neuroscientific precedents, my predoctoral
research proposes to define how programs responsible for synaptogenesis and synaptic maintenance are
utilized and sustained in malignant glioma. I have identified a novel protein, immunoglobulin superfamily
member 3 (IGSF3), with high expression levels in both in utero neurodevelopment and malignant glioma. My
preliminary data using an in utero electroporation mouse model of glioma have revealed that IGSF3
overexpression drives tumor progression by increasing proliferation and decreasing survival. Furthermore,
overexpression of IGSF3 promotes early-onset seizures in tumor mice and selectively increases excitatory
postsynaptic components at the tumor margin. Based on my initial studies, I hypothesize that increased IGSF3
drives glioma progression by increasing potassium-mediated hyperexcitability that leads secondarily to
synaptic alterations in the surrounding neuronal circuitry. This hyperexcitability then feeds back to the tumor to
promote tumor progression through increased mitogenic and promigratory signaling pathways.
The results of my predoctoral studies have led me to hypothesize that there is aberrant electrophysiological
activity within tumor cells and that this contributes to disease progression as well. Thus, my postdoctoral
studies will focus on defining and modeling tumor-intrinsic electrophysiological activity in human GBM to
achieve a better understanding of how these networks contribute to disease progression. This research
proposal seeks to summarize previously reported research findings and my preliminary experimental results
that support my hypotheses and rationale, and aims to explain the significance and innovation of my study as
well as the scientific methodologies and techniques I will utilize in order to execute my lines of scientific inquiry.
项目概要
恶性胶质瘤是一组高级别脑肿瘤,代表最常见的形式
恶性脑肿瘤。目前的治疗方案包括手术、化疗相结合
和放射治疗,但诊断出最致命的神经胶质瘤变异后的 5 年生存率,
胶质母细胞瘤 (GBM) 的比例仍停滞在 6% 以下。虽然新的科学探究不断产生新颖的成果
疾病驱动机制,生存率在过去 30 年中保持不变,突显了
需要新的治疗方法来治疗这些致命的疾病。
最近的科学研究表明,恶性神经胶质瘤形成直接突触电化学
与肿瘤外神经元的连接以维持持续的增殖和迁移。本研究的
神经胶质瘤细胞和非肿瘤神经细胞之间复杂的相互作用启动了新的科学探究
被称为癌症神经科学。鉴于这些神经科学先例的存在,我的博士前
研究建议定义负责突触发生和突触维持的程序如何
在恶性神经胶质瘤中使用和维持。我发现了一种新的蛋白质,免疫球蛋白超家族
成员 3 (IGSF3),在子宫神经发育和恶性胶质瘤中都有高表达水平。我的
使用神经胶质瘤子宫内电穿孔小鼠模型的初步数据表明 IGSF3
过度表达通过增加增殖和降低存活率来驱动肿瘤进展。此外,
IGSF3 过度表达促进肿瘤小鼠早发性癫痫发作并选择性增加兴奋性
肿瘤边缘的突触后成分。根据我的初步研究,我假设 IGSF3 增加
通过增加钾介导的过度兴奋来驱动神经胶质瘤进展,从而导致
周围神经元回路的突触改变。这种过度兴奋然后反馈给肿瘤
通过增加有丝分裂和前迁移信号通路促进肿瘤进展。
我的博士前研究结果使我推测存在异常的电生理学
肿瘤细胞内的活性,这也有助于疾病进展。于是,我的博士后
研究将集中于定义和模拟人类 GBM 中肿瘤固有的电生理活动
更好地了解这些网络如何促进疾病进展。这项研究
提案旨在总结之前报道的研究结果和我的初步实验结果
支持我的假设和基本原理,旨在解释我的研究的意义和创新
以及我将用来执行我的科学探究的科学方法和技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Naomi Curry其他文献
Rachel Naomi Curry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Naomi Curry', 18)}}的其他基金
Decoding hyperexcitability in malignant glioma
解码恶性神经胶质瘤的过度兴奋
- 批准号:
10529810 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
IGSF3 promotes tumor progression through synaptic remodeling and hyperexcitability in malignant glioma
IGSF3通过恶性神经胶质瘤的突触重塑和过度兴奋促进肿瘤进展
- 批准号:
10315147 - 财政年份:2021
- 资助金额:
$ 4.77万 - 项目类别:
相似国自然基金
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
异常获利、捐赠与会计信息操纵:基于新冠疫情的准自然实验研究
- 批准号:72372061
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
签字注册会计师动态配置问题研究:基于临阵换师视角
- 批准号:72362023
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
相似海外基金
Decoding hyperexcitability in malignant glioma
解码恶性神经胶质瘤的过度兴奋
- 批准号:
10529810 - 财政年份:2022
- 资助金额:
$ 4.77万 - 项目类别:
Differential Redox & Electrophilic Toxicities of Modified Tobacco Products
微分氧化还原
- 批准号:
8641670 - 财政年份:2013
- 资助金额:
$ 4.77万 - 项目类别:
Differential Redox & Electrophilic Toxicities of Modified Tobacco Products
微分氧化还原
- 批准号:
8445036 - 财政年份:2013
- 资助金额:
$ 4.77万 - 项目类别:
Citrulline to Prevent or Mitigate Acute Lung Injury in Severe Sepsis
瓜氨酸预防或减轻严重脓毒症的急性肺损伤
- 批准号:
8610942 - 财政年份:2012
- 资助金额:
$ 4.77万 - 项目类别:
Citrulline to Prevent or Mitigate Acute Lung Injury in Severe Sepsis
瓜氨酸预防或减轻严重脓毒症的急性肺损伤
- 批准号:
8424973 - 财政年份:2012
- 资助金额:
$ 4.77万 - 项目类别: