Graph Learning of Cell-cell Communications in Spatial Transcriptomics
空间转录组学中细胞间通信的图学习
基本信息
- 批准号:10672669
- 负责人:
- 金额:$ 12.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-06 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAirAir PollutantsAir PollutionAirway DiseaseAllergensAsthmaAutomobile DrivingBlood CirculationCell CommunicationCellsCodeComplexConnecticutDataData AnalysesData SetDatabasesDevelopmentDiseaseDisease ManagementENG geneEnvironmental ExposureEnvironmental Risk FactorExposure toGSTM3 geneGene ExpressionGenesGeneticGoalsGrantHumidityIndividualKnowledgeLeadLinkMachine LearningMeasurementMoldsMolecularNatureNetwork-basedOccupational ExposureOnline SystemsParentsPatientsPersonsPhenotypeRainReportingResearchResearch DesignResearch MethodologyResearch Project GrantsResearch Project SummariesRiskSeveritiesSeverity of illnessSignal TransductionSmokingSputumSupervisionSymptomsTemperatureUnited States Environmental Protection AgencyVariantVisitallergic responseasthmaticasthmatic patientatmospheric conditionsbasecell typechronic inflammatory diseaseclimate changeclimate dataclinical phenotypedata centersdesigndisease phenotypedisorder controlextreme weathergene environment interactiongenome wide association studygenome-widegraph learningimprovedintercellular communicationpet animalpreventpulmonary functionsevere weathersingle-cell RNA sequencingtherapeutic developmenttooltranscriptomicsweather stations
项目摘要
PROJECT SUMMARY
Research Project: Studies have shown that extreme weather is associated with changes in disease severity
and activity. However, the molecular mechanisms influenced by atmospheric conditions that contribute to asthma
severity and activity are poorly understood, which prevents us in designing effective asthma treatments.
Furthermore, given climate change and increasing variability in daily atmospheric conditions, it is critical to
understand these gene-environment interactions on asthma for better control of asthma symptoms. Gene-
environment interactions have been previously reported as important determinants of risk for asthma, but the
exact nature of the relationships and the molecular signals associated with these interactions remain unclear.
Gene-environment interaction studies have mostly focused on exposure to pets, mold, smoking, occupational
exposure, air pollution, and other allergens. None of the studies have considered changes in atmospheric
conditions in the analysis, leaving a knowledge gap on the molecular mechanism of the interaction between
climate change and gene and its contribution to phenotypes of asthma severity and activity. To fill this knowledge
gap, we will explore the relationships between environmental factors collected from the nearest observatory and
genome-wide cell type-specific gene expression levels in patients with asthma as well as its contribution to
asthma severity and activity. To achieve this goal, we propose to 1) assess cell type-specific transcriptomic
changes in the circulation and airway of asthma patients associated with fluctuations in atmospheric conditions
and the contribution of their interaction to the phenotypes of asthma severity and activity, and 2) evaluate
perturbations in intercellular communication induced by fluctuations in atmospheric conditions.
Research design and methods: Tools developed in Aim 1 of the parent R01 will be applied to deconvolve the
bulk expression data based on single-cell RNA sequencing (scRNA-seq) data so cell type-specific transcriptomic
changes associated with fluctuations in atmospheric conditions can be identified. Tools developed in Aims 2 and
3 of the parent R01 grant will be applied to construct cell-cell communication networks in each patient and detect
perturbations in these networks associated with fluctuations of atmospheric conditions using the deconvolved
data. The contribution of identified atmospheric condition associated changes to the phenotypes of asthma
severity and activity will be evaluated. The bulk expression data, scRNA-seq data and clinical phenotypes of
asthma have been generated in Dr. Chupp’s lab and stored in the online YCAAD database that is constructed
and maintained by Dr. Rajeevan. The daily atmospheric condition data from the closest weather station
associated with each patient based on their zip codes will be downloaded and organized by Dr. Rajeevan.
Preprocessing of all the data and the analysis of the data using tools developed in the parent R01 grant will be
guided and supervised by Drs. Xiting Yan and Zuoheng Wang.
项目概要
研究项目:研究表明极端天气与疾病严重程度的变化有关
然而,大气条件影响导致哮喘的分子机制。
人们对哮喘的严重程度和活动性知之甚少,这阻碍了我们设计有效的哮喘治疗方法。
此外,鉴于气候变化和日常大气条件的变化不断增加,至关重要的是
了解这些基因与环境对哮喘的相互作用,以便更好地控制哮喘症状。
此前曾报道环境相互作用是哮喘风险的重要决定因素,但
这些关系的确切性质以及与这些相互作用相关的分子信号仍不清楚。
基因-环境相互作用研究主要集中在接触宠物、霉菌、吸烟、职业
暴露、空气污染和其他过敏原都没有考虑到大气的变化。
分析中的条件,在相互作用的分子机制上留下了知识空白
气候变化和基因及其对哮喘严重程度和活动表型的贡献填补了这一知识。
差距,我们将探讨从最近的天文台收集的环境因素与
哮喘患者全基因组细胞类型特异性基因表达水平及其对哮喘的贡献
为了实现这一目标,我们建议 1) 评估细胞类型特异性转录组。
哮喘患者的循环和气道变化与大气条件的波动有关
以及它们的相互作用对哮喘严重程度和活动性表型的贡献,2) 评估
大气条件波动引起的细胞间通讯扰动。
研究设计和方法:母体 R01 的目标 1 中开发的工具将用于对
基于单细胞 RNA 测序 (scRNA-seq) 数据的批量表达数据,因此细胞类型特异性转录组
可以识别与大气条件波动相关的变化。目标 2 和 中开发的工具。
母公司 R01 拨款的 3 部分将用于在每位患者体内构建细胞间通信网络并检测
使用去卷积计算这些网络中与大气条件波动相关的扰动
数据。已确定的大气条件相关变化对哮喘表型的贡献。
将评估其批量表达数据、scRNA-seq 数据和临床表型。
哮喘已在 Chupp 博士的实验室中生成并存储在构建的在线 YCAAD 数据库中
由 Rajeevan 博士维护的来自最近气象站的每日大气状况数据。
Rajeevan 博士将根据邮政编码下载并组织与每位患者相关的信息。
所有数据的预处理以及使用母 R01 拨款中开发的工具对数据的分析将是
严西廷博士和王作恒博士指导和监督。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zuoheng Wang其他文献
Zuoheng Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zuoheng Wang', 18)}}的其他基金
Graph Learning of Cell-cell Communications in Spatial Transcriptomics
空间转录组学中细胞间通信的图学习
- 批准号:
10661087 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Graph Learning of Cell-cell Communications in Spatial Transcriptomics
空间转录组学中细胞间通信的图学习
- 批准号:
10504269 - 财政年份:2022
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Longitudinal Study of Gene-Environment Interplay in Alcoholism
酒精中毒基因与环境相互作用纵向研究的新方法
- 批准号:
9057927 - 财政年份:2015
- 资助金额:
$ 12.56万 - 项目类别:
Novel Methods for Longitudinal Study of Gene-Environment Interplay in Alcoholism
酒精中毒基因与环境相互作用纵向研究的新方法
- 批准号:
9267409 - 财政年份:2015
- 资助金额:
$ 12.56万 - 项目类别:
相似国自然基金
调控金属–石墨化炭电子相互作用促进氧活化及室内空气污染物室温催化消除
- 批准号:22376165
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
针对中等尺寸分子空气污染物检测的金属-有机骨架基传感器及其气敏性能研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
双碳目标不同实现路径下空气污染物组分变化对慢性肾脏病的影响研究
- 批准号:
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
混频异构数据下空气污染物减排与温室气体减排“协同效应”的量化测度及优化控制
- 批准号:72264016
- 批准年份:2022
- 资助金额:28 万元
- 项目类别:地区科学基金项目
实际道路典型交通相关空气污染物的车内暴露特征研究
- 批准号:52000117
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Effects of per- and polyfluoroalkyl substances on placental features and size at birth
全氟烷基和多氟烷基物质对出生时胎盘特征和大小的影响
- 批准号:
10645524 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Impact of benzene-induced MIA on fetal T cell development
苯诱导的 MIA 对胎儿 T 细胞发育的影响
- 批准号:
10605881 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
A Low-Cost Wearable Connected Health Device for Monitoring Environmental Pollution Triggers of Asthma in Communities with Health Disparities
一种低成本可穿戴互联健康设备,用于监测健康差异社区中哮喘的环境污染诱因
- 批准号:
10601615 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
Psychobiological Mechanisms Underlying the Association Between Early Life Stress and Depression Across Adolescence
早期生活压力与青春期抑郁之间关联的心理生物学机制
- 批准号:
10749429 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别:
The effects of wildfire exposure on maternal allergic asthma and consequences on neurobiology
野火暴露对母亲过敏性哮喘的影响及其对神经生物学的影响
- 批准号:
10727122 - 财政年份:2023
- 资助金额:
$ 12.56万 - 项目类别: