Analyzing a novel mechanism of action of bacterial cAMP producing toxins
分析细菌 cAMP 产生毒素的新作用机制
基本信息
- 批准号:8796696
- 负责人:
- 金额:$ 53.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-01 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:Adenylate CyclaseAnthrax diseaseAntibioticsAntibodiesAsthmaAutophagocytosisBacillus anthracisBindingBiologicalBiological ModelsBioterrorismBlood CirculationBlood VesselsCadherinsCause of DeathCell Adhesion MoleculesCell membraneCell physiologyCellsCessation of lifeCholeraCholera ToxinComplexCyclic AMPCyclic AMP-Dependent Protein KinasesDermatitisDiarrheaDiseaseDockingDrosophila genusDrosophila melanogasterEdemaEmbryoEndosomesEpithelialEpithelial Cell JunctionEpithelial CellsExtravasationFishesFluids and SecretionsGeneticGenetic ModelsGrantHealthHumanImmuneInfectionInflammatoryInjection of therapeutic agentIntercellular JunctionsInterventionIntestinesIonsIschemiaLeadLigandsLinkLiquid substanceMalignant NeoplasmsMediatingMedicalMonomeric GTP-Binding ProteinsMusNational SecurityNeurodegenerative DisordersPathogenesisPathologyPathway interactionsPatientsPhagocytosisProcessProductionProteinsPublic HealthRecyclingResourcesSanitationShockSignal TransductionSignaling ProteinSystemTestingToxinTranslatingVascular Endothelial CellVascular EndotheliumVascular PermeabilitiesVesicleVibrio choleraeVirulence FactorsWaterZebrafishanthrax edema factorbasebody systemcytokineedema factoreffusionflyhuman diseasein vivoinhibitor/antagonistinstrumentintestinal epitheliumintestinal homeostasismigrationmonolayernotch proteinnovelnovel strategiespandemic diseasepathogenpreventprogramsprotein transportrab11 proteinsmall moleculetraffickingtranslational approach
项目摘要
DESCRIPTION (provided by applicant): Our recent discovery that key virulence factors from Bacillus anthracis, edema factor (EF), and Vibrio cholerae, cholera toxin (Ctx), both inhibit protein trafficking to cell-cell junctions is paradigm shifting. EF is a highly active adenylate cyclase and Ctx ADP-ribosylates Gs¿ subunits to constitutively activate host adenylate cyclase. These two cAMP producing toxins reduce the levels and activity of a small GTPase (Rab11) required in the final step of endocytic recycling of cell adhesion molecules (e.g., cadherins) and signaling proteins (e.g., Notch components) to cell-cell junctions, resulting in disruption of the vascular endothelium (EF) or intestinal epithelium (Ctx). This novel effect of EF and Ctx was discovered and genetically dissected in the model system Drosophila melanogaster (fruit fly), and these cell biological mechanisms translate to toxin action in human vascular endothelial cells (EF) and intestinal epithelial cells (Ctx) as well as in vivo in mice (both EF and Ctx). Another key finding, with important practical implications, was that over-expression of Rab11 can reverse the junction disrupting effects of EF and Ctx in vivo in flies and in human cells. In the current revised grant, we propose three integrated aims to elucidate the pathways mediating the barrier disruptive actions of EF and Ctx and to analyze the consequences of this novel cell biological mechanism in disease pathogenesis. In Aim 1 we will examine the pathways by which high sustained levels of cAMP produced by EF/Ctx reduce Rab11 protein levels to derail junctional transport and explore new potential functions of EF and Ctx related to inhibition of exocyst function in immune cells. In Aim 2, we will investigate how inhibition of endocytic recycling promotes leakage across human cell monolayers and in the vasculature during anthrax infection. Since vascular collapse is a frequent cause of death in anthrax, we will also determine whether increasing Rab11 levels or treating with known traffic-promoting agents can reverse the vascular leakage caused by EF. In Aim 3, we will similarly examine the contribution of exocyst inhibition to the massive fluid secretion that is pathognomonic of cholera and whether elevating endocytic recycling via genetic or pharmacological means is protective in vivo. The proposed studies have important translational relevance to treating anthrax since toxins can reach critical lethal levels just as patients begin to seek medical intervention, when antibiotics are no longer effective. Thus, treatments based on restoring endocytic recycling could be used in conjunction with existing anti-toxin therapies (e.g., anti-toxin antibodies, small molecule inhibitors) to neutralize toxins already present in the circulation. An advantage of traffic-promoting agents is that they would intervene at the very last step when vascular integrity collapses and other organ systems fail. Such traffic-promoting compounds might also increase the efficacy of fluid replacements to treat cholera and to treat other barrier disruptive diseases including: ischemia, asthma, dermatitis, IBD, cancer, ciliary diseases, and neurodegenerative disorders.
描述(由申请人提供):我们最近发现炭疽杆菌、水肿因子 (EF) 和霍乱弧菌、霍乱毒素 (Ctx) 的关键毒力因子均抑制蛋白质运输至细胞-细胞连接,这是一种范式转变。高活性腺苷酸环化酶和 Ctx ADP-核糖基化 Gs¿这两种产生 cAMP 的毒素可降低细胞粘附分子(例如钙粘蛋白)和信号蛋白(例如 Notch 成分)内吞回收最后步骤所需的小 GTP 酶 (Rab11) 的水平和活性。 ) 到细胞与细胞的连接,导致血管内皮 (EF) 或肠上皮的破坏EF 和 Ctx 的这种新作用是在模型系统果蝇(果蝇)中发现并进行基因剖析的,这些细胞生物学机制转化为人类血管内皮细胞 (EF) 和肠上皮细胞 (Ctx) 的毒素作用。 )以及小鼠体内(EF 和 Ctx)的另一个重要发现,具有重要的实际意义,是 Rab11 的过度表达可以逆转连接破坏效应。在当前修订的资助中,我们提出了三种综合途径来阐明 EF 和 Ctx 介导的屏障破坏作用,并分析这种新的细胞生物学机制在疾病发病机制中的后果。在目标 1 中,我们将研究 EF/Ctx 产生的高持续水平的 cAMP 降低 Rab11 蛋白水平从而使连接运输脱轨的途径,并探索 EF 和 Ctx 与抑制相关的新潜在功能。在目标 2 中,我们将研究内吞再循环的抑制如何促进炭疽感染期间跨人体细胞单层和脉管系统的渗漏,因为血管塌陷是炭疽死亡的常见原因,我们还将确定是否会增加。 Rab11 水平或使用已知的交通促进剂治疗可以逆转 EF 引起的血管渗漏。在目标 3 中,我们将类似地检查外囊抑制对大量液体的贡献。霍乱特有的分泌物,以及通过遗传或药理学手段提高内吞循环是否具有体内保护作用,所提出的研究对于治疗炭疽具有重要的转化意义,因为当患者开始寻求医疗干预时,当抗生素使用时,毒素可能达到临界致命水平。因此,基于恢复内吞再循环的治疗可以与现有的抗毒素疗法(例如抗毒素抗体、小分子抑制剂)结合使用来中和。交通促进剂的一个优点是,当血管完整性崩溃和其他器官系统衰竭时,它们会在最后一步进行干预,这种促进交通的化合物也可能会提高液体替代品治疗霍乱的功效。并治疗其他屏障破坏性疾病,包括:缺血、哮喘、皮炎、炎症性肠病、癌症、纤毛疾病和神经退行性疾病。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ETHAN BIER其他文献
ETHAN BIER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ETHAN BIER', 18)}}的其他基金
Analysis of homolog-based CRISPR editing in somatic cells
体细胞中基于同源物的 CRISPR 编辑分析
- 批准号:
10676726 - 财政年份:2022
- 资助金额:
$ 53.79万 - 项目类别:
Analysis of homolog-based CRISPR editing in somatic cells
体细胞中基于同源物的 CRISPR 编辑分析
- 批准号:
10343429 - 财政年份:2022
- 资助金额:
$ 53.79万 - 项目类别:
Development of next-generation gene drive technologies for Anopheles population engineering
开发用于按蚊种群工程的下一代基因驱动技术
- 批准号:
10408862 - 财政年份:2021
- 资助金额:
$ 53.79万 - 项目类别:
Development of next-generation gene drive technologies for Anopheles population engineering
开发用于按蚊种群工程的下一代基因驱动技术
- 批准号:
10278897 - 财政年份:2021
- 资助金额:
$ 53.79万 - 项目类别:
Development of next-generation gene drive technologies for Anopheles population engineering
开发用于按蚊种群工程的下一代基因驱动技术
- 批准号:
10624305 - 财政年份:2021
- 资助金额:
$ 53.79万 - 项目类别:
The mutagenic chain reaction: a method for autocatalyic gene dissemination
诱变链式反应:一种自催化基因传播的方法
- 批准号:
10211352 - 财政年份:2016
- 资助金额:
$ 53.79万 - 项目类别:
The mutagenic chain reaction: a method for autocatalyic gene dissemination
诱变链式反应:一种自催化基因传播的方法
- 批准号:
10614935 - 财政年份:2016
- 资助金额:
$ 53.79万 - 项目类别:
The mutagenic chain reaction: a method for autocatalyic gene dissemination
诱变链式反应:一种自催化基因传播的方法
- 批准号:
9009589 - 财政年份:2016
- 资助金额:
$ 53.79万 - 项目类别:
Mutagenic chain reaction-facilitated immunotherapy
诱变链式反应促进的免疫疗法
- 批准号:
9163059 - 财政年份:2016
- 资助金额:
$ 53.79万 - 项目类别:
Mutagenic chain reaction-facilitated immunotherapy
诱变链式反应促进的免疫疗法
- 批准号:
9755350 - 财政年份:2016
- 资助金额:
$ 53.79万 - 项目类别:
相似国自然基金
转录因子MiEIN3在拮抗菌N-1介导的采后芒果炭疽病抗性中的调控机制
- 批准号:32302169
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柑橘胶孢炭疽病效应蛋白致病机理的探讨
- 批准号:32360658
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PpbHLH14-DMR6-like响应MeJA诱导增强梨炭疽病抗性的分子机制
- 批准号:32302484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
辣椒抗炭疽病基因AnRGO5的克隆和分子机制研究
- 批准号:32302557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
JrMPK3 途径响应胶孢炭疽菌效应蛋白 CgCFEM 调控核桃对炭疽病抗性的研究
- 批准号:32371919
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Analyzing a novel mechanism of action of bacterial cAMP producing toxins
分析细菌 cAMP 产生毒素的新作用机制
- 批准号:
9416066 - 财政年份:2014
- 资助金额:
$ 53.79万 - 项目类别:
Analyzing a novel mechanism of action of bacterial cAMP producing toxins
分析细菌 cAMP 产生毒素的新作用机制
- 批准号:
8998800 - 财政年份:2014
- 资助金额:
$ 53.79万 - 项目类别:
Analyzing a novel mechanism of action of bacterial cAMP producing toxins
分析细菌 cAMP 产生毒素的新作用机制
- 批准号:
8673121 - 财政年份:2014
- 资助金额:
$ 53.79万 - 项目类别:
IND Enabling Studies for Small Molecule Anthrax Lethal Factor Inhibitors
小分子炭疽致死因子抑制剂的 IND 启用研究
- 批准号:
8826678 - 财政年份:2013
- 资助金额:
$ 53.79万 - 项目类别:
IND Enabling Studies for Small Molecule Anthrax Lethal Factor Inhibitors
小分子炭疽致死因子抑制剂的 IND 启用研究
- 批准号:
9252365 - 财政年份:2013
- 资助金额:
$ 53.79万 - 项目类别: