Project 1: Ionic Modulation of Chromatin in Cancer
项目 1:癌症中染色质的离子调节
基本信息
- 批准号:8866970
- 负责人:
- 金额:$ 41.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-19 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAnimal ModelApoptosisArchitectureBreastCell DeathCell Death Signaling ProcessCell LineCell NucleusCell physiologyCellsCharacteristicsChromatinChromatin StructureChromosome StructuresChromosomesClinicalClinical TrialsCollaborationsCombination Drug TherapyDisease ProgressionDiureticsDrug CombinationsElectrostaticsEnvironmentFDA approvedGene ExpressionGene Expression ProfileGenotypeGlioblastomaGoalsHigher Order Chromatin StructureHumanIon Channel ProteinIonic StrengthsIonsLeadLengthLifeMalignant NeoplasmsMapsMeasurementMetabolismMetaphaseMethodsMolecularMultiple MyelomaNuclearNucleosome Core ParticleNucleosomesPatientsPharmaceutical PreparationsPharmacological TreatmentPhenotypePhysical ChemistryPhysical condensationPhysiologicalPhysiological ProcessesPlayPotassiumPotassium ChannelReportingResearch PersonnelRoleSeriesSignal PathwaySpectrum AnalysisStagingTestingTherapeutic AgentsTherapeutic InterventionWorkXenograft procedurecancer cellcancer therapychemotherapydensitydesigninsightleukemiamalignant breast neoplasmmalignant phenotypememberneoplastic cellnovel therapeuticsresearch studytheoriestumortumor progressiontumorigenic
项目摘要
ABSTRACT (PROJECT 1)
Intracellular potassium levels play a central role in regulating physiological processes and are generally
maintained within narrow limits. Recent studies reveal that aggressive and highly metastatic breast as well as
multiple myeloma cancer cells maintain potassium concentrations that are 200-300% higher than matched
non-tumorigenic cells. Since the strongest physicochemical interactions involved in reversible chromatin
condensation are electrostatic, any perturbations in the ionic environment of the nucleus, such as those driven
by a pathophysiological elevation of cellular potassium content, are anticipated to have profound effects on
chromatin structure and access to transcriptional machinery. Thus this discovery has global physiological
implications. It also has the potential to unify a variety of reports showing that elevated potassium levels
suppress cell death signaling pathways, as well as acting on the large number of ion channel proteins known to
play a role in cancer progression. In this proposal we test the hypothesis that alterations in intracellular
potassium levels alter chromatin structure and nuclear organization and consequently, global gene expression.
To address this hypothesis we will develop new physical methods to: a) understand the impact of potassium
concentration on chromatin structure at the physical level in tumor cells; b) probe the relationship between
elevated potassium and clinical stage and grade of human tumors; and c) test whether this facet of cancer cell
physiology can be exploited for the design of new combination chemotherapies. These experiments will be
performed across multiple length scales: from intact living cells to isolated nuclei to metaphase chromosomes
and finally on nucleosome core particles. Understanding ion imbalances in cancer may allow the repurposing
of current FDA-approved agents, such as diuretics that work by modulating intracellular potassium levels, for
use in combination with current chemotherapies for cancer treatment. Drug combinations will be tested in
several cancers, including glioblastoma, through collaboration with the Patient Derived Xenograph Core using
the Core's series of staged and genotyped GBM tumor lines. This project connects directly to the overarching
framework of the CR-PSOC “Spatio-Temporal Dynamics of Chromatin and Information Transfer in Cancer”
through the study of physiochemical changes in the nuclear environment that are important in cancer
progression. Project 1 investigators will address how changes in cellular concentration of potassium impact
chromatin condensation and how this contributes to the malignant phenotype. Members of this
transdisciplinary team will work in collaboration with Project 3 to determine the extent of chromatin compaction
in intact nuclei, and with members of Project 2 to examine the potential roles for potassium accumulation in
leukemia. The role of Project 1 in the Center is to resolve key electrostatic features of the cancer cell nucleus
and then apply the new insights to understand, and ultimately intervene in disease progression.
摘要(项目 1)
细胞内钾水平在调节生理过程中起着核心作用,通常是
最近的研究表明,侵袭性和高度转移性乳房以及。
多发性骨髓瘤癌细胞维持的钾浓度比匹配细胞高 200-300%
由于最强的物理化学相互作用涉及可逆染色质。
凝结是静电的,原子核离子环境中的任何扰动,例如驱动的扰动
通过细胞钾含量的病理生理学升高,预计会对
因此,这一发现具有全球性的生理意义。
它还有可能统一显示钾水平升高的各种报告。
抑制细胞死亡信号通路,以及作用于已知的大量离子通道蛋白
在这项提议中,我们检验了细胞内变化的假设。
钾水平改变染色质结构和核组织,从而改变整体基因表达。
为了解决这个假设,我们将开发新的物理方法来:a)了解钾的影响
b) 探究肿瘤细胞中染色质结构的物理水平;
钾升高与人类肿瘤的临床分期和分级有关;c) 测试癌细胞的这一方面是否存在
生理学可用于设计新的联合化疗。
在多个长度尺度上进行:从完整的活细胞到分离的细胞核到中期染色体
最后是核小体核心颗粒,了解癌症中的离子失衡可能有助于重新利用。
目前 FDA 批准的药物,例如通过调节细胞内钾水平起作用的利尿剂,
与目前的癌症化疗药物组合的使用将进行测试。
通过与 Patient Derived Xenograph Core 合作,治疗包括胶质母细胞瘤在内的多种癌症
Core 的一系列分期和基因分型 GBM 肿瘤系直接与总体相关。
CR-PSOC“癌症中染色质时空动力学和信息传递”的框架
通过研究核环境中对癌症很重要的物理化学变化
项目 1 研究人员将解决细胞钾浓度变化如何影响进展
染色质浓缩及其如何导致恶性表型。
跨学科团队将与项目 3 合作确定染色质压缩的程度
在完整的细胞核中,并与项目 2 的成员一起研究钾积累的潜在作用
该中心项目1的作用是解决癌细胞核的关键静电特征。
然后应用新的见解来理解并最终干预疾病的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS V O'HALLORAN其他文献
THOMAS V O'HALLORAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('THOMAS V O'HALLORAN', 18)}}的其他基金
TR&D Project 1: Higher Throughput Multi-element Distribution & Quantitation at the Tissue Level
TR
- 批准号:
10652605 - 财政年份:2020
- 资助金额:
$ 41.42万 - 项目类别:
TR&D Project 1: Higher Throughput Multi-element Distribution & Quantitation at the Tissue Level
TR
- 批准号:
10494056 - 财政年份:2020
- 资助金额:
$ 41.42万 - 项目类别:
TR&D Project 1: Higher Throughput Multi-element Distribution & Quantitation at the Tissue Level
TR
- 批准号:
10197969 - 财政年份:2020
- 资助金额:
$ 41.42万 - 项目类别:
Regulatory Roles of Zinc Fluxes in Metalloprotein Occupancy and Cell Cycle Progression
锌通量在金属蛋白占据和细胞周期进展中的调节作用
- 批准号:
10541893 - 财政年份:2015
- 资助金额:
$ 41.42万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Antibody-based therapy for fentanyl-related opioid use disorder
基于抗体的芬太尼相关阿片类药物使用障碍治疗
- 批准号:
10831206 - 财政年份:2023
- 资助金额:
$ 41.42万 - 项目类别:
Modeling, measurement and prediction of cardiac magneto-stimulation thresholds
心脏磁刺激阈值的建模、测量和预测
- 批准号:
10734438 - 财政年份:2023
- 资助金额:
$ 41.42万 - 项目类别:
Integrated experimental and computational approach for accurate patient-specific vascular embolization
用于准确的患者特异性血管栓塞的综合实验和计算方法
- 批准号:
10724852 - 财政年份:2023
- 资助金额:
$ 41.42万 - 项目类别:
Determine the role of atmospheric particulate matter pollutants in contributing to Lewy Body Dementia
确定大气颗粒物污染物在路易体痴呆症中的作用
- 批准号:
10662930 - 财政年份:2023
- 资助金额:
$ 41.42万 - 项目类别:
Development of a rapid, scalable, and deployable point-of-care blood volume diagnostic for monitoring postpartum and trauma-related hemorrhage
开发快速、可扩展且可部署的护理点血容量诊断,用于监测产后和创伤相关出血
- 批准号:
10603819 - 财政年份:2023
- 资助金额:
$ 41.42万 - 项目类别: