Proliferative asymmetry in the neural stem cell lineage established by asymmetric cell division
由不对称细胞分裂建立的神经干细胞谱系的增殖不对称性
基本信息
- 批准号:10664431
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-07 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAnimalsApicalBiological AssayBrainCell CycleCell LineageCell ProliferationCell divisionCellsCentral Nervous SystemDataDaughterDefectDevelopmentDiseaseDrosophila genusEducational process of instructingEnsureFailureGoalsGrantGrowthInheritedInvertebratesLaboratoriesLearningLipidsMeasuresMediatingMentorsModelingMolecularMothersNeuronsOrganPIK3CG genePathway interactionsProliferatingProliferation MarkerProteinsRegulationResearchRoleRunningS-Phase FractionSiblingsSideSpecific qualifier valueSystemTestingTissuesTrainingTraining ActivityVertebratesWorkWritingZebrafishcell cortexcell typedaughter cellfollow-upimprovedlive cell imagingmembernerve stem cellneurogenesispreventprogramsrepairedscreeningsegregationskillsstem cell divisionstem cell proliferationstem cell therapystem cellstissue repairtraining opportunitytumorigenesis
项目摘要
ABSTRACT
In the proposed work, I will be investigating how neural stem cells establish ‘proliferative asymmetries’, which
are responsible for precisely controlling the development and repair of the central nervous system. During
development and tissue repair, stem cells are triggered to proliferate. While proliferation is necessary, it must be
precise to prevent overgrowth that can lead to tumorigenesis. As neural stem cells proliferate, they commonly
divide asymmetrically. The ability to undergo asymmetric cell division is a highly conserved feature of neural
stem cells across all animals. Asymmetric cell division produces one daughter cell that retains the neural stem
cell identity, and one daughter cell which takes on a neuron-producing progenitor cell identity. A key difference
between these two daughter cells is that the stem cell will rapidly reenter the cell cycle and divide again, while
the progenitor cell will divide much more slowly or stop dividing all together. This proliferative asymmetry ensures
that the proper number of neurons are produced, and its disruption leads to defects in neurogenesis. The
molecular basis for this proliferative asymmetry mostly unknown. I will focus my independent research program
around the mechanisms which establish this proliferative asymmetry. I hypothesize that this proliferative
asymmetry is established by the differential inheritance of proliferation promoting factors during asymmetric cell
division. I plan to learn how neural stem cells generate proliferative asymmetries in both invertebrates and
vertebrates, through the use of Drosophila and zebrafish animal models. Studying both animal models will allow
me to identify conserved and divergent modes of generating proliferative asymmetries in neural stem cells, while
also providing me with new training opportunities. Both animal models are highly amenable to live cell imaging
of neural stem cells in developing brains. In Aim 1, I will screening for proliferation regulators which are polarized
in the mother neural stem cell. In Aim 2, I will determine how polarized proliferative regulators contribute to
proliferative asymmetries between sibling cells. In Aim 3, I will determine how PAR polarity proteins regulate the
PI3K proliferation pathway. Through my initial screening, I have already discovered one promising candidate
that appears to mediate the proliferative asymmetry in the neural stem cell lineage, the lipid PIP3. PIP3 is
transiently produced by the mother neural stem cell just before division, becomes polarized to one side of the
cell, and gets inherited by the daughter cell which retains the neural stem cell identity. Discovering how PIP3
and other factors establish proliferative asymmetries during asymmetric cell division will advance our
understanding of how neural stem cells mediate development and tissue repair. Through training activities aimed
at improving my skills in grant writing, scientific teaching, and mentoring, I will be better prepared to run my own
laboratory. The scientific discoveries and training this proposal will facilitate, will be foundational to building my
independent research program.
抽象的
在拟议的工作中,我将研究神经干细胞如何建立“增殖不对称”,这
负责精确控制中枢神经系统的发育和修复。
发育和组织修复,干细胞被触发增殖,虽然增殖是必要的,但它必须是。
精确地防止可能导致肿瘤发生的过度生长。随着神经干细胞的增殖,它们通常会发生。
进行不对称细胞分裂的能力是神经细胞高度保守的特征。
所有动物的干细胞不对称细胞分裂产生一个保留神经干的子细胞。
细胞身份,以及具有产生神经元的祖细胞身份的一个子细胞,这是一个关键的区别。
这两个子细胞之间的区别在于,干细胞会迅速重新进入细胞周期并再次分裂,而
这种增殖不对称性确保了祖细胞的分裂速度会慢得多或完全停止分裂。
产生适当数量的神经元,其破坏会导致神经发生缺陷。
这种增殖不对称性的分子基础大多未知,我将重点关注我的独立研究计划。
围绕建立这种增殖不对称的机制。
不对称性是由不对称细胞过程中增殖促进因子的差异遗传决定的
我计划了解神经干细胞如何在无脊椎动物和动物中产生增殖不对称性。
脊椎动物,通过使用果蝇和斑马鱼动物模型将允许研究这两种动物模型。
我识别神经干细胞中产生增殖不对称性的保守和发散模式,同时
也为我提供了新的培训机会,这两种动物模型都非常适合活细胞成像。
在目标 1 中,我将筛选极化的增殖调节因子。
在目标 2 中,我将确定极化增殖调节因子如何促进母体神经干细胞的生长。
在目标 3 中,我将确定 PAR 极性蛋白如何调节兄弟细胞之间的增殖不对称性。
通过我的初步筛选,我已经发现了一个有希望的候选者。
脂质 PIP3 似乎介导神经干细胞谱系的增殖不对称性。
由母体神经干细胞在分裂前短暂产生,极化到神经干细胞的一侧
细胞,并由保留神经干细胞身份的子细胞继承。
和其他因素在不对称细胞分裂过程中建立增殖不对称将促进我们的
通过旨在训练的活动了解神经干细胞如何介导发育和组织修复。
在提高我在资助写作、科学教学和指导方面的技能时,我将为自己的管理做好更好的准备
该提案将促进科学发现和培训,并将成为建设我的实验室的基础。
独立研究计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bryce LaFoya其他文献
Bryce LaFoya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bryce LaFoya', 18)}}的其他基金
Membrane Localization of Atypical Protein Kinase C during Neuroblast Polarization
神经母细胞极化过程中非典型蛋白激酶 C 的膜定位
- 批准号:
10001981 - 财政年份:2019
- 资助金额:
$ 12.5万 - 项目类别:
相似国自然基金
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Effect of High Salt Diet on Proximal Tubular Sodium Reabsorption, Metabolic Stress, and Injury
高盐饮食对近端肾小管钠重吸收、代谢应激和损伤的影响
- 批准号:
10908784 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Elucidating the role of Myosin 5b in intestinal inflammation
阐明肌球蛋白 5b 在肠道炎症中的作用
- 批准号:
10883872 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别: