Computational toolbox for spatial transcriptomic analysis of complex tissues
用于复杂组织空间转录组分析的计算工具箱
基本信息
- 批准号:10666294
- 负责人:
- 金额:$ 43.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-21 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyBiomedical ResearchBrain DiseasesCell CommunicationCellsClinicalCommunicationComplexComputer softwareComputing MethodologiesDataData SetDependenceDevelopmentDiagnosisDiseaseDisease ProgressionEvaluationFunding MechanismsGene ExpressionGenetic TranscriptionGenomicsGoalsHistologyHistopathologyImageImmuneLocationMachine LearningMammary NeoplasmsMapsMeasurementMethodsModalityModelingModernizationMolecularMolecular ProfilingMorphologyNeighborhoodsNormal RangeOrganoidsPatientsPatternPlayProceduresProcessPublishingResolutionRoleSamplingSpottingsSystemTechniquesTechnologyTherapeuticTissue SampleTissue imagingTissuesTumor TissueVisualizationWorkbrain tissuecell typecohortcomputerized toolsdata integrationdeep learningdesigngenomic datahigh dimensionalityhistological imageimage processingimprovedinnovationinsightmachine learning frameworkmachine learning methodmachine learning modelmultidimensional datamultimodalitynovelopen sourcesingle cell analysissingle-cell RNA sequencingspatial integrationsupervised learningtooltranscriptometranscriptomicstreatment response
项目摘要
PROJECT SUMMARY
Mapping the spatial organization of cells and their communication in tissues is essential to understanding the
process of development and disease formation. The rapid development of spatial transcriptomic technologies
has enabled the profiling of the full transcriptome across thousands of locations in a tissue sample. In addition
to transcriptional measurements, this technology also obtains paired histological imaging of the tissue.
The spatially resolved profiling of gene expression has the potential to unlock groundbreaking discoveries,
however, there are critical barriers in analyzing this data especially in complex tissue samples that involve the
mixing of many diverse cell types in capture locations (spots). The low resolution makes it difficult to discern
diverse cell types which is essential for downstream analysis of their spatial organization, dynamics, and
interactions. Additionally, integrating spatial transcriptomic datasets across multiple tissue samples is not
straightforward due to this technical limitation. Existing computational tools for analyzing high-dimensional
genomic data were either built for single-cell resolution data or require paired single-cell transcriptomic data to
guide the analysis of spatial transcriptomic data. Additionally, current methods do not consider spatial
dependencies and information embedded in the histology image.
The overarching goal of this proposal is to develop novel machine learning methods for analyzing the new
wave of spatial transcriptomic data without the need for paired single-cell data as a reference. These
innovative frameworks will enable characterizing diverse cell states and their spatial dynamics through a
semi-supervised deconvolution of data (Aim 1) which will also allow integration of data from multiple tissue
samples. We will also develop a multi-view framework for the integration of spatial transcriptomic and
histological imaging for improved inference of intercellular interactions (Aim 2). By combining image processing
algorithms for the alignment of images from replicate samples, we will extend this framework for integrating
tissue samples.
Our toolbox will be applicable to a broad range of tissue systems and larger clinical cohorts and has the
potential to be transformative in understanding spatial dynamics during healthy development and guiding
diagnosis and therapeutic strategies based on the spatial organization of cell types specific to the disease
microenvironment.
项目概要
绘制细胞的空间组织及其在组织中的通讯对于理解细胞的空间组织至关重要。
发育过程和疾病形成。空间转录组技术的快速发展
能够对组织样本中数千个位置的完整转录组进行分析。此外
除了转录测量之外,该技术还获得了组织的配对组织学成像。
基因表达的空间解析图谱有可能带来突破性的发现,
然而,分析这些数据存在关键障碍,尤其是涉及复杂组织样本的数据。
在捕获位置(点)混合多种不同的细胞类型。分辨率低,难以辨别
不同的细胞类型,这对于下游分析其空间组织、动力学和
互动。此外,整合多个组织样本的空间转录组数据集并不是
由于这种技术限制,很简单。用于分析高维的现有计算工具
基因组数据要么是为单细胞分辨率数据构建的,要么需要配对的单细胞转录组数据
指导空间转录组数据的分析。此外,当前的方法不考虑空间
组织学图像中嵌入的依赖性和信息。
该提案的总体目标是开发新颖的机器学习方法来分析新的
空间转录组数据波,无需配对单细胞数据作为参考。这些
创新框架将能够通过
数据的半监督反卷积(目标 1),这也将允许整合来自多个组织的数据
样品。我们还将开发一个多视图框架来整合空间转录组和
用于改进细胞间相互作用推断的组织学成像(目标 2)。通过结合图像处理
用于对齐重复样本中的图像的算法,我们将扩展此框架以集成
组织样本。
我们的工具箱将适用于广泛的组织系统和更大的临床队列,并具有
在健康发展和指导过程中理解空间动态方面具有变革性的潜力
基于疾病特有细胞类型的空间组织的诊断和治疗策略
微环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elham Azizi其他文献
Elham Azizi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elham Azizi', 18)}}的其他基金
Machine learning methods for interpreting spatial multi-omics data
用于解释空间多组学数据的机器学习方法
- 批准号:
10585386 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Integrative framework for identifying dysregulated mechanisms in the tumor-immune microenvironment
识别肿瘤免疫微环境失调机制的综合框架
- 批准号:
10392487 - 财政年份:2020
- 资助金额:
$ 43.55万 - 项目类别:
Integrative framework for identifying dysregulated mechanisms in the tumor-immune microenvironment
识别肿瘤免疫微环境失调机制的综合框架
- 批准号:
10159875 - 财政年份:2020
- 资助金额:
$ 43.55万 - 项目类别:
相似国自然基金
地表与大气层顶短波辐射多分量一体化遥感反演算法研究
- 批准号:42371342
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
高速铁路柔性列车运行图集成优化模型及对偶分解算法
- 批准号:72361020
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
随机密度泛函理论的算法设计和分析
- 批准号:12371431
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于全息交通数据的高速公路大型货车运行风险识别算法及主动干预方法研究
- 批准号:52372329
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
高效非完全信息对抗性团队博弈求解算法研究
- 批准号:62376073
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Upper airway collapsibility, loop gain and arousal threshold: an integrative therapeutic approach to obstructive sleep apnea
上气道塌陷、循环增益和唤醒阈值:阻塞性睡眠呼吸暂停的综合治疗方法
- 批准号:
10859275 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别:
Quantitative imaging of choroid plexus function and neurofluid circulation in Alzheimer's Disease Related Dementia
阿尔茨海默病相关痴呆症脉络丛功能和神经液循环的定量成像
- 批准号:
10718346 - 财政年份:2023
- 资助金额:
$ 43.55万 - 项目类别: