MULTIMODAL MRI TO PREDICT DBS MOTOR AND COGNITIVE OUTCOMES IN PARKINSON’S DISEASE

多模态 MRI 预测帕金森病的 DBS 运动和认知结果

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Implantable deep brain stimulation (DBS) is a second-line surgical neuromodulation for Parkinson's disease (PD) that can provide significant relief of motor symptoms when medications become less effective, however there are currently no reliable predictors of therapeutic efficacy. While the gold standard suggests that a patient will benefit from DBS if their motor symptoms respond to PD medications with at least 30% improvement, the pre- dictive accuracy of this criteria is variable across studies, and has been disproportionately evaluated in the con- text of only one of two common brain targets for PD. A lack of reliable prognostic criteria to predict overall out- comes with DBS, including risk for cognitive side-effects in balance with motor symptom improvement, has led to variable patient outcomes. Some not considered candidates by the gold standard have been reported to re- spond well to DBS, while others have experienced limited benefit despite strong candidacy and well positioned electrodes. With over 4000 DBS surgeries performed in the US for PD each year, there is an increasing demand for better prognostic tools and streamlined approaches to inform optimal candidate and brain target selection. We aim to address this unmet need by leveraging advanced MRI techniques for improved prediction of patient outcomes after one year of DBS. Previous studies have shown that measures of brain connectivity derived from functional MRI (fMRI) and diffusion tensor imaging (DTI), can be used to predict motor symptom response to DBS. Brain iron accumulation in the basal ganglia, a marker of PD severity derived from susceptibility contrast on T2* MRI, has also shown promise for predicting DBS motor outcomes. However, practical implementation of the results from previous studies in the pre-operative setting is limited by the use of normative connectomes, post-operative electrode coordinates, and less sensitive susceptibility techniques for prediction, along with out- come data from only one of two brain targets for PD. To overcome these limitations, we will use patient-specific pre-operative MRI data to predict outcomes for both PD targets. Specifically, we propose a novel multivariate approach that incorporates fMRI and DTI with quantitative susceptibility mapping (QSM), a superior susceptibility technique to T2* MRI, to enhance prediction accuracy. By using complimentary features of disease burden that are highly relevant to DBS effects on brain connectivity and individual basal ganglia structures, we expect that our approach will improve upon the current gold standard. In 100 patients with PD undergoing DBS, we aim to: 1) evaluate the impact of 3T MRI on clinical prediction of motor outcomes, 2) identify MR and clinical features most relevant for predicting overall versus individual motor and cognitive outcomes, and 3) investigate additional variance in patient outcomes explained by post-operative targeting accuracy. The results will provide a framework in which DBS outcomes can be reliably predicted at the patient and symptom level to inform candidate and target selection, and even therapeutic settings. In this way, we can ensure that resources are geared toward patients most likely to benefit from DBS.
项目概要/摘要 植入式深部脑刺激 (DBS) 是治疗帕金森病 (PD) 的二线神经调节手术 当药物效果不佳时,可以显着缓解运动症状,但是 目前尚无可靠的治疗效果预测指标。虽然黄金标准表明患者会 如果他们的运动症状对 PD 药物有至少 30% 的改善,则可以从 DBS 中获益, 该标准的表述准确性在不同的研究中存在差异,并且在联合研究中得到了不成比例的评估。 仅描述 PD 的两个常见大脑目标之一的文本。缺乏可靠的预后标准来预测总体结果 DBS 附带,包括与运动症状改善相平衡的认知副作用风险,导致 不同的患者结果。据报道,一些未被黄金标准考虑的候选者已重新 对星展银行反应良好,而其他人尽管候选资格强大且定位良好,但受益有限 电极。美国每年针对 PD 进行的 DBS 手术超过 4000 例,需求不断增加 获得更好的预后工具和简化的方法来告知最佳候选者和大脑目标选择。 我们的目标是利用先进的 MRI 技术来改善患者的预测,从而解决这一未满足的需求。 DBS 一年后的结果。先前的研究表明,大脑连接性的测量源自 功能性 MRI (fMRI) 和扩散张量成像 (DTI) 可用于预测运动症状反应 星展银行。基底神经节中的脑铁积聚,是源自敏感性对比的 PD 严重程度的标志 T2* MRI 也显示出预测 DBS 运动结果的前景。然而,实际执行 之前在术前环境中进行的研究结果受到规范连接体使用的限制, 术后电极坐标,以及用于预测的不太敏感的磁敏技术,以及out- 数据仅来自 PD 的两个大脑目标之一。为了克服这些限制,我们将使用针对患者的特定 术前 MRI 数据可预测两个 PD 目标的结果。具体来说,我们提出了一种新颖的多元 将功能磁共振成像 (fMRI) 和 DTI 与定量磁化率绘图 (QSM) 相结合的方法,这是一种卓越的磁化率 T2* MRI 技术,以提高预测准确性。通过利用疾病负担的互补特征 与 DBS 对大脑连接和个体基底神经节结构的影响高度相关,我们预计 我们的方法将改进当前的黄金标准。 在 100 名接受 DBS 的 PD 患者中,我们的目标是:1) 评估 3T MRI 对临床预测的影响 运动结果,2) 识别与预测整体运动和个体运动最相关的 MR 和临床特征 和认知结果,以及 3) 研究由术后解释的患者结果的额外差异 瞄准精度。结果将提供一个框架,可以在其中可靠地预测星展银行的结果 患者和症状水平,以告知候选人和目标选择,甚至治疗设置。这样, 我们可以确保资源用于最有可能从 DBS 中受益的患者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Melanie A Morrison其他文献

Melanie A Morrison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Melanie A Morrison', 18)}}的其他基金

MULTIMODAL MRI TO PREDICT DBS MOTOR AND COGNITIVE OUTCOMES IN PARKINSON’S DISEASE
多模态 MRI 预测帕金森病的 DBS 运动和认知结果
  • 批准号:
    10705789
  • 财政年份:
    2022
  • 资助金额:
    $ 66.15万
  • 项目类别:

相似国自然基金

开发区跨界合作网络的形成机理与区域效应:以三大城市群为例
  • 批准号:
    42301183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
秦岭生态效益转化与区域绿色发展模式
  • 批准号:
    72349001
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
  • 批准号:
    72364037
  • 批准年份:
    2023
  • 资助金额:
    28 万元
  • 项目类别:
    地区科学基金项目
政府数据开放与资本跨区域流动:影响机理与经济后果
  • 批准号:
    72302091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
  • 批准号:
    10665493
  • 财政年份:
    2023
  • 资助金额:
    $ 66.15万
  • 项目类别:
Understanding the Distributed Control of Flexible Behavior
了解灵活行为的分布式控制
  • 批准号:
    10640703
  • 财政年份:
    2023
  • 资助金额:
    $ 66.15万
  • 项目类别:
Nigrostriatal dopamine mechanisms of cognitive control
黑质纹状体多巴胺认知控制机制
  • 批准号:
    10639280
  • 财政年份:
    2023
  • 资助金额:
    $ 66.15万
  • 项目类别:
Striatal Microcircuit Mechanisms of Tardive Dyskinesia
迟发性运动障碍的纹状体微电路机制
  • 批准号:
    10634474
  • 财政年份:
    2023
  • 资助金额:
    $ 66.15万
  • 项目类别:
Quantitative Susceptibility Mapping of Brain Iron in People with HIV: Mechanistic Links to Neuropsychiatric Disorders
HIV 感染者脑铁的定量敏感性图谱:与神经精神疾病的机制联系
  • 批准号:
    10628697
  • 财政年份:
    2023
  • 资助金额:
    $ 66.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了