Physical Activity Measurement in Toddlers
幼儿身体活动测量
基本信息
- 批准号:10545040
- 负责人:
- 金额:$ 38.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:2 year old3 year old5 year oldAccelerometerAddressAdolescenceAdultAffectAgeAge MonthsAlgorithmsBehaviorChicagoChildChild CareChild RearingChildhoodClassificationClinicDancingDataData SetDevelopmentDevelopmental ProcessEnsureEpidemiologyEthnic OriginFemaleGoalsGrowthGuidelinesHabitsHealthHealth BenefitHip region structureHomeInvestigationKnowledgeLearningLightMachine LearningMeasurementMediationMethodologyMinorityModelingMotorMotor SkillsNational Heart, Lung, and Blood InstituteNursery SchoolsParentsParticipantPerformancePhysical activityPilot ProjectsPopulationPosturePremature BirthProcessPublic HealthRaceRecommendationReportingResearch ActivityRunningSamplingSchool-Age PopulationSex DifferencesSource CodeSumSurveysTestingTimeToddlerTrainingUnited StatesWalkingagedanalytical toolboyscomputerized data processingearly childhoodgirlsinterestmachine learning algorithmmalephysical inactivityrecruitresponsesedentarysexsocial influencetool
项目摘要
Project Summary
Physical inactivity is a significant health problem, affecting females more than males. Physical inactivity tends
to track over time and many young children aged 3 or 4 years are physically inactive. Therefore, understanding
when and how physical activity habits develop requires investigation starting at age 2 years or younger. In
toddler (age 1 or 2 years) physical activity research, however, a major methodological gap exists regarding
physical activity measurement, particularly related to accelerometer data processing. This gap limits our ability
to accurately estimate physical activity levels among toddlers. To process accelerometer data, an intensity-
based accelerometer count cut-point approach has been widely used. However, the cut-points suggested for
toddlers have been found to present low accuracy (≤58%). A new analytic approach, machine learning, has
been shown to provide more accurate activity classification among preschoolers and older children. Our pilot
study also suggests that the machine learning approach has great potential for toddler activity recognition. The
overarching goal of this proposed study is to better understand the development of physical activity behavior in
early childhood using an accurate physical activity measurement tool. The first aim is to develop and validate
an accelerometer-based machine learning algorithm for toddler activity recognition. The second aim is to
describe the trajectory of physical activity levels from age 12 to 36 months by sex. To achieve these aims, we
will recruit 124 children at approximate age 12 months from various pediatric clinics in Chicago and conduct
five waves of assessments at participant age 12, 18, 24, 30, and 36 months (waves 1 to 5). We will collect
accelerometer and video data (ground truth) in five free-living settings (home, childcare class, indoor playroom,
outdoor playground, and car-ride) in waves 1 to 4. The data will be split into a training set and a testing set.
The training dataset will be used to develop an activity recognition algorithm and the testing dataset will be
used to evaluate the newly developed algorithm. We will also conduct 7-day accelerometer assessments at
each of the five waves. Applying the algorithm developed in AIM 1, we will estimate daily time spent in
walking/running (minutes/day) and overall physical activity (minutes/day). We will use growth curve models to
examine the trajectories of walking/running time and overall physical activity time over age between 12 and 36
months, including sex as a predictor. This study will help to fill the methodological gap in toddler physical
activity measurement and expand the body of knowledge in early childhood physical activity.
项目概要
缺乏身体活动是一个严重的健康问题,对女性的影响大于男性。
随着时间的推移,许多 3 岁或 4 岁的幼儿身体不活跃,因此需要理解。
何时以及如何养成体育活动习惯需要从 2 岁或以下开始进行调查。
然而,幼儿(1 岁或 2 岁)体育活动研究在方法论方面存在重大差距
身体活动测量,特别是与加速度计数据处理相关的这种差距限制了我们的能力。
准确估计幼儿的身体活动水平 处理加速度计数据,强度 -
基于加速度计计数的切点方法已被广泛使用,但是,建议的切点为。
研究发现,幼儿的准确度较低(≤58%)。
我们的试点已被证明可以为学龄前儿童和年龄较大的儿童提供更准确的活动分类。
研究还表明,机器学习方法在幼儿活动识别方面具有巨大潜力。
这项研究的总体目标是更好地了解身体活动行为的发展
幼儿期使用准确的身体活动测量工具的首要目标是开发和验证。
用于幼儿活动识别的基于加速度计的机器学习算法。
描述 12 至 36 个月期间按性别划分的体力活动水平的轨迹 为了实现这些目标,我们。
将从芝加哥的各个儿科诊所招募 124 名大约 12 个月大的儿童,并进行
我们将收集参与者年龄为 12、18、24、30 和 36 个月的五波评估(第 1 波至第 5 波)。
五个自由生活环境(家庭、儿童保育班、室内游戏室、
第 1 至 4 波中的户外游乐场和汽车骑行)。数据将分为训练集和测试集。
训练数据集将用于开发活动识别算法,测试数据集将用于
用于评估新开发的算法,我们还将进行为期 7 天的加速度计评估。
应用 AIM 1 中开发的算法,我们将估算每天花费的时间。
步行/跑步(分钟/天)和总体身体活动(分钟/天)我们将使用生长曲线模型来计算。
检查 12 岁至 36 岁之间步行/跑步时间和总体身体活动时间的轨迹
月,包括将性别作为预测因素,这项研究将有助于填补幼儿身体的方法学空白。
活动测量并扩大幼儿体育活动的知识体系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soyang Kwon其他文献
Soyang Kwon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soyang Kwon', 18)}}的其他基金
The interactive effects of physical activity and sedentary behaviors during childhood on adiposity in early adulthood
儿童期体力活动和久坐行为对成年早期肥胖的交互影响
- 批准号:
10217218 - 财政年份:2020
- 资助金额:
$ 38.78万 - 项目类别:
The interactive effects of physical activity and sedentary behaviors during childhood on adiposity in early adulthood
儿童期体力活动和久坐行为对成年早期肥胖的交互影响
- 批准号:
10056295 - 财政年份:2020
- 资助金额:
$ 38.78万 - 项目类别:
Timing and mechanism for developing physical activity habits
养成身体活动习惯的时机和机制
- 批准号:
8770562 - 财政年份:2014
- 资助金额:
$ 38.78万 - 项目类别:
Timing and mechanism for developing physical activity habits
养成身体活动习惯的时机和机制
- 批准号:
8878321 - 财政年份:2014
- 资助金额:
$ 38.78万 - 项目类别:
相似国自然基金
3-6岁人工耳蜗植入儿童汉语句法习得机制
- 批准号:32371110
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3-6岁学龄前儿童碘膳食参考摄入量的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
3-6岁儿童情绪调节能力的追踪研究:亲子互动同步性与儿童气质的共同作用
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
3-6岁幼儿易怒发展的追踪研究:认知调节策略及神经机制
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
贫困地区0-3岁婴幼儿非认知能力干预的影响及其作用机理研究
- 批准号:72003112
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Prospective international phase-III study to improve neurocognitive outcomes in young children with low-risk medulloblastoma (YCMB-LR)
改善低危髓母细胞瘤幼儿神经认知结果的前瞻性国际 III 期研究 (YCMB-LR)
- 批准号:
10720110 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Food and Non-Food Self-Regulation in Children's Obesity Risk: A Biopsychosocial Perspective
儿童肥胖风险中的食品和非食品自我调节:生物心理社会视角
- 批准号:
10561810 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Milk Type in Toddlers (Milk-TOT) Study: Impact of Whole versus Low-fat Milk on Child Adiposity, Health and Development
幼儿牛奶类型 (Milk-TOT) 研究:全脂牛奶与低脂牛奶对儿童肥胖、健康和发育的影响
- 批准号:
10735791 - 财政年份:2023
- 资助金额:
$ 38.78万 - 项目类别:
Mechanisms of protection against shigellosis in children
儿童志贺氏菌病的保护机制
- 批准号:
10641951 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别:
Mechanisms of protection against shigellosis in children
儿童志贺氏菌病的保护机制
- 批准号:
10530772 - 财政年份:2022
- 资助金额:
$ 38.78万 - 项目类别: