Mathematical modeling of optimal therapeutic combinations for HIV cure
HIV治愈最佳治疗组合的数学模型
基本信息
- 批准号:10540716
- 负责人:
- 金额:$ 46.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-16 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAcquired Immunodeficiency SyndromeAcuteAdultAftercareAgreementCAR T cell therapyCD4 Positive T LymphocytesCaringCell TherapyCellsCharacteristicsChronicClinicClinical TrialsCollaborationsCombined Modality TherapyConsensusConsumptionCreativenessDataDoseDrug KineticsEncapsulatedExperimental DesignsFosteringFred Hutchinson Cancer Research CenterGene ModifiedGenetic VariationGoalsHIVHIV InfectionsHIV antiretroviralHIV therapyHealth protectionHomeHumanImmunologicsIndividualInfrastructureInfusion proceduresIngestionInterruptionInterventionKineticsLinkLongevityLymphocyteMilitary PersonnelMissionModelingOutcomeOutcome MeasurePatternPeptide antibodiesPersonsProbabilityPublic HealthResearchResearch PersonnelRunningSafetyScheduleSiteTestingTherapeuticTimeTrainingTreatment EfficacyUnited States National Institutes of HealthVaccinationVaccine TherapyViralVirus Replicationantiproliferative agentsantiretroviral therapycollaboratorycombinatorialcontrol theorycostcurative treatmentseffective interventionexperimental studygene therapygene transplantation for gene therapyin silicoin vivoinnovationmathematical modelmultimodalitynanoparticlenonhuman primatepillpreventprocess optimizationprogramsresponsesimulationsocial stigmastem cellssynthetic antibodiestheoriestranslational therapeuticstransmission processtreatment durationviral rebound
项目摘要
PROJECT SUMMARY
Antiretroviral therapy (ART) suppresses HIV replication and allows a normal lifespan for infected persons, but
daily pill ingestion is required to avoid progression to AIDS and further HIV transmission. Multiple therapeutic
strategies are being considered to achieve a functional cure for HIV. However, to date, no single approach has
achieved sufficient potency for an HIV functional cure. Therefore, there is increasing agreement that an HIV cure
will require a multi-pronged approach. This proposal has the objective to identify optimal and feasible
combinations of investigational therapeutic approaches to achieve functional cure of HIV using data-validated
mathematical models. Our hypothesis is that data-validated mathematical models can identify specific
mechanisms of therapeutic combinations, by linking observed kinetics and potency with various quantifiable
outcome measures. Our specific aims will validate this hypothesis by fitting different mathematical models that
encapsulate competing possible mechanisms to outcome data from curative interventions currently under study,
including levels of different reservoir cellular subset, viral quantities, viral diversity and time to viral rebound.
Model selection theory will be used to identify the most parsimonious models that reliably explain experimental
results. We will use the most parsimonious model that recapitulated the data from each study to perform in silico
experiments. We will list all plausible combinations of therapeutic approaches and model each combination. We
will create combinatorial dose-response curves by running simulations for each combination by using the
parameterization obtained from the fits and by tuning the parameters for each therapy including dosing,
scheduling, and order of treatment. This proposal is significant because testing all possible combinations of
approaches is impractical, excessively time consuming and expensive. The inability to rigorously assess all
potential approaches is a critical barrier to achieve optimal outcomes. Therefore, our proposal is innovative
because we propose a rigorous, quantitative framework in which plausible combinations of available
interventions are considered and compared with the potential to identify which combination therapies most likely
will achieve a functional cure.
项目概要
抗逆转录病毒疗法 (ART) 可抑制 HIV 复制并让感染者获得正常的寿命,但
需要每天服用药物以避免发展为艾滋病和进一步的艾滋病毒传播。多重治疗
正在考虑实现艾滋病毒功能性治愈的策略。然而,迄今为止,还没有任何单一方法能够
达到了艾滋病毒功能性治愈的足够效力。因此,越来越多的人认为治愈艾滋病毒
需要采取多管齐下的方法。该提案的目标是确定最佳且可行的
使用经过数据验证的研究性治疗方法组合来实现艾滋病毒的功能性治愈
数学模型。我们的假设是,经过数据验证的数学模型可以识别特定的
通过将观察到的动力学和效力与各种可量化的联系起来,治疗组合的机制
结果措施。我们的具体目标将通过拟合不同的数学模型来验证这一假设
概括目前正在研究的治疗干预措施结果数据的竞争可能机制,
包括不同储存细胞亚群的水平、病毒数量、病毒多样性和病毒反弹时间。
模型选择理论将用于识别能够可靠解释实验的最简约模型
结果。我们将使用最简洁的模型来概括每项研究的数据,以在计算机中执行
实验。我们将列出所有可能的治疗方法组合并对每种组合进行建模。我们
将通过使用以下方法对每个组合运行模拟来创建组合剂量反应曲线
从拟合中获得参数化并通过调整每种治疗的参数(包括剂量),
安排和治疗顺序。这个提议很重要,因为测试了所有可能的组合
这些方法不切实际、过于耗时且昂贵。无法严格评估所有
潜在的方法是实现最佳结果的关键障碍。因此,我们的建议是有创新性的
因为我们提出了一个严格的定量框架,其中可用的合理组合
考虑干预措施并与潜力进行比较,以确定最有可能的联合疗法
将达到功能性治愈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Tisdell Schiffer其他文献
Joshua Tisdell Schiffer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Tisdell Schiffer', 18)}}的其他基金
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
7838589 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8434257 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8034802 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8220961 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Intense Validation of a Mathematical Model of Herpes Simplex Virus-2 Pathogenesis
单纯疱疹病毒 2 型发病机制数学模型的强化验证
- 批准号:
8628030 - 财政年份:2010
- 资助金额:
$ 46.59万 - 项目类别:
Establishing microbial and biochemical thresholds for development and persistence
建立发育和持久性的微生物和生化阈值
- 批准号:
8769641 - 财政年份:
- 资助金额:
$ 46.59万 - 项目类别:
相似国自然基金
从CD4+、CD8+T细胞免疫活化分子及其上游调控因子表达探究健脾祛湿法治疗艾滋病免疫调节机制
- 批准号:81460716
- 批准年份:2014
- 资助金额:48.0 万元
- 项目类别:地区科学基金项目
HAART过程中HCV复制增强与肝细胞MAVS抗病毒通路的关系研究
- 批准号:81201286
- 批准年份:2012
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Estimating the population size of persons who inject drugs in New York
估计纽约注射吸毒者的人口规模
- 批准号:
10705455 - 财政年份:2022
- 资助金额:
$ 46.59万 - 项目类别:
Increasing representation of black communities in SARS-CoV-2 serosurveys by understanding barriers and motivations for participation
通过了解参与的障碍和动机,增加黑人社区在 SARS-CoV-2 血清调查中的代表性
- 批准号:
10843497 - 财政年份:2021
- 资助金额:
$ 46.59万 - 项目类别:
Estimating the population size of persons who inject drugs in New York
估计纽约注射吸毒者的人口规模
- 批准号:
10347333 - 财政年份:2020
- 资助金额:
$ 46.59万 - 项目类别:
Mathematical modeling of optimal therapeutic combinations for HIV cure
HIV治愈最佳治疗组合的数学模型
- 批准号:
10593449 - 财政年份:2019
- 资助金额:
$ 46.59万 - 项目类别:
Mathematical modeling of optimal therapeutic combinations for HIV cure
HIV治愈最佳治疗组合的数学模型
- 批准号:
10312707 - 财政年份:2019
- 资助金额:
$ 46.59万 - 项目类别: