Magnetic Resonance Elastography
磁共振弹性成像
基本信息
- 批准号:10533325
- 负责人:
- 金额:$ 39.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-05 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAcousticsAlgorithmsAnisotropyAwarenessBasic ScienceBiological MarkersBiopsyBrainBrain DiseasesBreastCancer DetectionCell physiologyCellsClinicalClinical ResearchComplexComputer softwareCytoskeletonDataData SetDetectionDevelopmentDevicesDiagnosisDiagnosticDiseaseEngineeringEnvironmentEvaluationEvolutionFibrosisFrequenciesGenerationsGoalsGrantHealthHepaticImageImaging TechniquesImaging technologyInflammationLightingLiverLiver FibrosisMagnetic Resonance ElastographyMagnetic Resonance ImagingMalignant NeoplasmsMeasuresMechanicsMedicalMedicineMethodsModalityModelingModulusMorphologic artifactsMotionMotivationMuscleOrganPatient CarePatientsPerformancePeriodicityPhysiologic pulsePilot ProjectsPopulationPrevalenceProcessPropertyProtocols documentationReactionReproducibilityResearchResearch PersonnelResolutionRheologyRoleSystemTechniquesTechnologyTestingTimeTissue ModelTissuesTranslatingTranslationsValidationWorkchronic liver diseaseclinical applicationclinical diagnosticsclinical practiceclinically relevantdesignelastographyflexibilitygeometric structureimage reconstructionimprovedin vivoinnovationliver biopsymechanical propertiesmechanotransductionmotion sensitivitynanometernoninvasive diagnosisnovelpublic health relevancequantitative imagingresponsetechnology developmenttoolvolunteer
项目摘要
DESCRIPTION (provided by applicant): Many disease processes cause profound changes in the mechanical properties of tissue, providing motivation for developing technologies to measure these properties for diagnostic purposes. In addition, over the last decade there has been growing awareness of the importance of tissue matrix mechanics on cellular function. Cells react to the dynamic and static properties of their matrix environment through mechanotransduction and cytoskeletal remodeling. It is now known that mechanobiology has an important role in the origin and evolution of many disease processes, including fibrosis and cancer. The goal of this research is to develop advanced MRI-based technologies for quantitatively assessing the mechanical properties of tissue and to explore and translate high-impact clinical and research applications. MR Elastography (MRE) is based on the principle that propagating mechanical waves reflect the properties of their medium. Shear waves are generated in the body and imaged with MRI techniques that have the remarkable ability to depict cyclic motions as small as 100 nanometers. The data are processed with inversion algorithms to provide cross-sectional images quantitatively depicting mechanical properties such as the complex shear modulus. In the last grant cycle, the hepatic MRE technology developed under this grant was successfully translated into wide clinical practice and is now used in patient care at hundreds of medical facilities around the world. Liver fibrosis is an important health problem with a rising prevalence in the US population. For many patients, MRE provides a safer, more comfortable, and less expensive alternative to liver biopsy for diagnosing this condition. Research has revealed many other promising applications, including noninvasive diagnosis of fibrosis and inflammation in other organs, detection and characterization of malignancies, providing new biomarkers to assess brain disease, and as a tool in basic research mechanobiology at the tissue and organ scales. As in the last grant cycle, the primary focus of the work will continue to be advanced technology development, to enable further basic and clinical research in this promising field, as well as to conduct pilot studies to identify clincal applications, and to develop practical protocols that will allow validation and eventual translatio to MRE to clinical practice. The research plan involves theoretical work, basic MRI pulse sequence development, device engineering, and protocol testing studies with normal and patient volunteers. Innovative approaches will be implemented and evaluated for generating mechanical waves in tissue, acquiring image data, and processing to generate quantitative images depicting previously inaccessible biomarkers. These technologies will be integrated into protocols that can be shared with other investigators and used to explore the practicality and value of promising applications.
描述(由申请人提供):许多疾病过程会导致组织机械特性发生深刻变化,这为开发用于诊断目的的测量这些特性的技术提供了动力。此外,在过去的十年中,人们越来越认识到组织的重要性。细胞通过机械转导和细胞骨架重塑对其基质环境的动态和静态特性做出反应。现在已知机械生物学在许多疾病过程(包括纤维化和疾病)的起源和演变中发挥着重要作用。这项研究的目标是开发基于 MRI 的先进技术,用于定量评估组织的机械特性,并探索和转化基于传播机械波原理的高影响力的临床和研究应用。反映其介质的特性,并通过 MRI 技术进行成像,该技术具有描绘小至 100 纳米的循环运动的能力。数据经过反演算法处理后可提供横截面图像。肝纤维化是一个重要的健康问题,在美国人群中患病率不断上升,对于许多患者来说,MRE 为诊断这种疾病提供了一种更安全、更舒适、更少的替代方案。研究揭示了许多其他有前景的应用,包括无创诊断。的其他器官的纤维化和炎症,恶性肿瘤的检测和表征,提供新的生物标志物来评估脑部疾病,并作为组织和器官尺度的基础研究机械生物学的工具,与上一个资助周期一样,该工作的主要重点将是。继续进行先进技术开发,以便在这一前景广阔的领域开展进一步的基础和临床研究,并进行试点研究以确定临床应用,并制定实用的方案,以验证 MRE 并最终将其转化为临床研究。计划涉及理论工作、基本 MRI 脉冲序列开发、设备工程以及与正常和患者志愿者进行的协议测试研究,将实施和评估创新方法,以在组织中生成机械波、采集图像数据以及处理生成以前无法访问的生物标记物的定量图像。这些技术将被集成到可以与其他研究人员共享的协议中,并用于探索有前途的应用的实用性和价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard L. Ehman其他文献
Richard L. Ehman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard L. Ehman', 18)}}的其他基金
相似国自然基金
高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
- 批准号:12305275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
U型离散顺流火蔓延非稳态热输运机理与加速机制研究
- 批准号:52308532
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NOTCH3/HLF信号轴驱动平滑肌细胞表型转化加速半月板退变的机制研究
- 批准号:82372435
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
TWIST1介导的ITGBL1+肿瘤相关成纤维细胞转化加速结肠癌动态演化进程机制及其预防干预研究
- 批准号:82373112
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
实施科学视角下食管癌加速康复外科证据转化障碍机制与多元靶向干预策略研究
- 批准号:82303925
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786355 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786256 - 财政年份:2023
- 资助金额:
$ 39.75万 - 项目类别:
High Framerate Plane-Wave Variance of Acceleration and Vector Flow Imaging for the Characterization of Atherosclerotic Plaque Morphology and Assessment of Vascular Hemodynamics
高帧率平面波加速度方差和矢量流成像用于动脉粥样硬化斑块形态的表征和血管血流动力学的评估
- 批准号:
10461534 - 财政年份:2022
- 资助金额:
$ 39.75万 - 项目类别: