Extracellular Proteolysis as a Molecular Stratification Tool for Cancer
细胞外蛋白水解作为癌症的分子分层工具
基本信息
- 批准号:8829207
- 负责人:
- 金额:$ 16.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimal ModelBiologicalBiological AssayBiological MarkersBloodBreast Cancer ModelBreast Cancer cell lineCancer cell lineCell LineCell physiologyCell secretionClassificationClinicalComplexComputer SimulationCouplingDecision MakingDetectionDevelopmentDiagnosisDiagnosticDiseaseDockingDrug resistanceFunctional ImagingGene ExpressionGenomic approachGoalsHealthHomology ModelingImageKineticsLaboratoriesLibrariesLifeMachine LearningMalignant NeoplasmsMalignant neoplasm of prostateMass Spectrum AnalysisMeasurementMediatingMethodsModelingMolecularMonitorNeoplasm Circulating CellsPatientsPeptide HydrolasesPeptidesPhasePlayPositioning AttributePrimary NeoplasmProcessPropertyProtease InhibitorProteinsProteolysisProteomicsReagentRoleSamplingScreening for cancerSpecificityStratificationStructure-Activity RelationshipSubstrate SpecificityTechniquesTechnologyTestingTherapeuticTissuesTumor MarkersWeightbasecellular imagingclinically relevantdesignextracellularfunctional genomicshigh throughput screeningimaging probeimprovedmalignant breast neoplasmmalignant phenotypenew technologynovelpersonalized diagnosticspre-clinicalpreferenceprostate cancer cell lineprotein aminoacid sequenceprotein expressionscreeningthree dimensional structuretooltumor
项目摘要
DESCRIPTION (provided by applicant): Functional genomic strategies have been widely implemented to define unique molecular subtypes of cancer in order to predict phenotypic properties such as metastatic potential and sensitivity to therapeutic compounds. However, changes in the level of gene and protein expression can be circumstantial and therefore play no functional role in the development of the disease. One of the hallmarks of aggressive cancer is its ability to escape the cellular milieu and spread to new tissues, a process that is mediated in part by the activity of extracellular proteases. Protease activity is tightly regulated by subcelluar localization, the presence of endogenous protease inhibitors, and requisite conversion from inactive precursor forms. Therefore, in these circumstances, it is not enough to know protease expression levels alone. We propose that global profiles of extracellular protease activity may emerge as a powerful functional tool for the molecular stratification of cancer. The Craik laboratory has developed a novel mass spectrometry-based screening technology that can identify the global substrate specificity and kinetic efficiency of proteases alone and in complex biological mixtures by employing a small, diverse library of rationally designed peptide substrates. This technology, referred to as Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), marks a significant breakthrough in protease profiling by allowing for the unbiased and simultaneous detection of all protease activities in a given sample. In this proposal, the Craik laboratory will partner with the Sali laboratory to develop and test computational models that classify cancer samples on the basis of protease specificity with the goal of building protease-activatable diagnostics for subtype-specific imaging. Global profiles of extracellular protease activity from increasingly complex breast and prostate cancer samples will be determined using the MSP-MS assay. In parallel, machine learning algorithms will be used to develop specificity-based classification models that will be correlated to known metrics for tumor aggressiveness. Sub-libraries of peptide sequences that represent the major classification groups identified will aid in designing protease-activatable imaging probes that will be tested experimentally for subtype selectivity. Probe cleavage sequences will be iteratively refined to improve selectivity through both incorporation of cleavage rates into the modeling strategy and peptide docking against the 3D structures of the target proteases. The new class of reagents developed will be applied to and further optimized against clinical correlations in the next phase of the project. We anticipate that our strategy for generating tailored diagnostics for the functional profiling of cancer will advance the identification and monitoring of disease as well as
aid in cancer biomarker discovery.
描述(由申请人提供):功能基因组策略已被广泛实施来定义癌症的独特分子亚型,以预测表型特性,例如转移潜力和对治疗化合物的敏感性。然而,基因和蛋白质表达水平的变化可能是偶然的,因此在疾病的发展中不发挥功能性作用。侵袭性癌症的标志之一是其能够逃离细胞环境并扩散到新组织,这一过程部分是由细胞外蛋白酶的活性介导的。蛋白酶活性受到亚细胞定位、内源蛋白酶抑制剂的存在以及无活性前体形式的必要转化的严格调节。因此,在这些情况下,仅了解蛋白酶表达水平是不够的。我们认为细胞外蛋白酶活性的整体概况可能会成为癌症分子分层的强大功能工具。 Craik 实验室开发了一种基于质谱的新型筛选技术,通过采用合理设计的小型、多样化的肽底物库,可以识别单独的蛋白酶和复杂生物混合物中的蛋白酶的整体底物特异性和动力学效率。该技术被称为质谱多重底物分析 (MSP-MS),通过允许公正且同时检测给定样品中的所有蛋白酶活性,标志着蛋白酶分析领域的重大突破。在这项提案中,Craik 实验室将与 Sali 实验室合作开发和测试计算模型,根据蛋白酶特异性对癌症样本进行分类,目标是为亚型特异性成像建立蛋白酶激活的诊断方法。将使用 MSP-MS 测定来确定日益复杂的乳腺癌和前列腺癌样本的细胞外蛋白酶活性的整体概况。与此同时,机器学习算法将用于开发基于特异性的分类模型,该模型将与已知的肿瘤侵袭性指标相关联。代表所识别的主要分类组的肽序列子文库将有助于设计可通过实验测试亚型选择性的蛋白酶激活成像探针。通过将裂解率纳入建模策略以及针对目标蛋白酶 3D 结构的肽对接,探针裂解序列将得到迭代细化,以提高选择性。开发的新型试剂将在项目下一阶段应用于临床相关性并进一步优化。我们预计,我们为癌症功能分析生成定制诊断的策略将促进疾病的识别和监测以及
帮助癌症生物标志物的发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Scott Craik其他文献
Charles Scott Craik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Scott Craik', 18)}}的其他基金
Developing Antivirals Targeting Proteases and Polymerases of Coronaviruses, Picornaviruses and Bunyavirales
开发针对冠状病毒、小核糖核酸病毒和布尼亚病毒的蛋白酶和聚合酶的抗病毒药物
- 批准号:
10512628 - 财政年份:2022
- 资助金额:
$ 16.83万 - 项目类别:
New radiotracer development to study immune cell mobilization of granzyme proteolytic activity
开发新的放射性示踪剂来研究免疫细胞动员颗粒酶蛋白水解活性
- 批准号:
10231735 - 财政年份:2021
- 资助金额:
$ 16.83万 - 项目类别:
New radiotracer development to study immune cell mobilization of granzyme proteolytic activity
开发新的放射性示踪剂来研究免疫细胞动员颗粒酶蛋白水解活性
- 批准号:
10395587 - 财政年份:2021
- 资助金额:
$ 16.83万 - 项目类别:
New radiotracer development to study immune cell mobilization of granzyme proteolytic activity
开发新的放射性示踪剂来研究免疫细胞动员颗粒酶蛋白水解活性
- 批准号:
10591415 - 财政年份:2021
- 资助金额:
$ 16.83万 - 项目类别:
Probing the Role of Chaperone-TPR Complexes in Tau Proteostasis
探讨分子伴侣-TPR 复合物在 Tau 蛋白质稳态中的作用
- 批准号:
10029781 - 财政年份:2020
- 资助金额:
$ 16.83万 - 项目类别:
Non-invasive Differentiation of Benign Lesions from Aggressive Pancreatic Cancer
良性病变与侵袭性胰腺癌的无创鉴别
- 批准号:
8823694 - 财政年份:2015
- 资助金额:
$ 16.83万 - 项目类别:
Antibodies for Characterizing the Structure and Function of Proteases
用于表征蛋白酶结构和功能的抗体
- 批准号:
8702411 - 财政年份:2014
- 资助金额:
$ 16.83万 - 项目类别:
Allosteric Inhibition of a Family of Proteolytic Enzymes
蛋白水解酶家族的变构抑制
- 批准号:
8577916 - 财政年份:2013
- 资助金额:
$ 16.83万 - 项目类别:
Allosteric Inhibition of a Family of Proteolytic Enzymes
蛋白水解酶家族的变构抑制
- 批准号:
9039629 - 财政年份:2013
- 资助金额:
$ 16.83万 - 项目类别:
Allosteric Inhibition of a Family of Proteolytic Enzymes
蛋白水解酶家族的变构抑制
- 批准号:
8698774 - 财政年份:2013
- 资助金额:
$ 16.83万 - 项目类别:
相似国自然基金
Gemykibivirus生物学特性的研究及感染小鼠动物模型的建立
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
低氧诱导的外泌体OTUB1调控血管瘤内皮细胞生物学行为的作用及机制研究
- 批准号:81901022
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
新型椎间盘退变动物模型的构建及其应力生物学的机制研究
- 批准号:81874013
- 批准年份:2018
- 资助金额:80.0 万元
- 项目类别:面上项目
硼酸盐生物活性玻璃对双膦酸盐相关性颌骨坏死的修复作用及机制研究
- 批准号:81701028
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
临床相关的挫伤、剪切伤和牵拉伤胸脊髓损伤大鼠模型的建立及分析研究
- 批准号:81771347
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Neural Circuits, Kinetics and Energetics HTS of Human iPSC-Neurons, -Microglia, and -Astrocytes: AI-Enabled Platform for Target ID, and Drug Discovery and Toxicity (e.g., Cancer Chemo & HIV ARTs)
人类 iPSC 神经元、小胶质细胞和星形胶质细胞的神经回路、动力学和能量 HTS:用于目标 ID、药物发现和毒性(例如癌症化疗)的 AI 平台
- 批准号:
10707866 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Small Molecule Therapeutics for Sickle Cell Anemia
镰状细胞性贫血的小分子疗法
- 批准号:
10601679 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
X-ray fluorescence emission tomography for imaging trace gold in mouse models
X 射线荧光发射断层扫描用于对小鼠模型中的痕量金进行成像
- 批准号:
10537866 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别:
Development of an INSPIRE System for the Treatment of Inoperable Liver Tumors
开发用于治疗无法手术的肝脏肿瘤的 INSPIRE 系统
- 批准号:
10560677 - 财政年份:2023
- 资助金额:
$ 16.83万 - 项目类别: