Use of 3D Quantitative Optical Methods to Optimize Mebendazole Treatment of Ovarian Cancer
使用 3D 定量光学方法优化甲苯咪唑治疗卵巢癌
基本信息
- 批准号:10662191
- 负责人:
- 金额:$ 18.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAnimalsAntiparasitic AgentsAutopsyBindingBlood VesselsCalibrationCancer CenterCancer PatientCell DeathCellsCenters of Research ExcellenceClinicalClinical ResearchClinical TrialsDataDevelopmentDiagnosisDiseaseDisease remissionDoseElectronicsEndoplasmic ReticulumEngineeringEnterobiusEpithelial ovarian cancerEpitheliumFDA approvedFenbendazoleFluorescenceFutureGlycogenGrantHumanHydrophobicityImageImaging TechniquesImaging technologyMalignant Female Reproductive System NeoplasmMalignant NeoplasmsMalignant neoplasm of ovaryMammalsMathematicsMeasurementMeasuresMedical ImagingMedical centerMethodsMicrotubule PolymerizationModelingMorphologyOklahomaOncologyOptical Coherence TomographyOptical MethodsOptical TomographyOvarianParasitesPatient-Focused OutcomesPatientsPenetrationPharmaceutical PreparationsPublic HealthRecurrenceResearchResearch PersonnelResearch Project GrantsResearch SupportResistance developmentResolutionSurfaceSurvival RateTestingTherapeuticTherapeutic EffectTissue imagingTissuesToxic effectTreatment EfficacyTumor TissueUnited States National Institutes of HealthVariantWomanXenograft procedureanti-canceranticancer activityanticancer treatmentbenzimidazolebiomarker evaluationbiomedical imagingcancer therapycancer typechemotherapyclinical applicationcollegedensitydrug developmentdrug mechanismdrug repurposingeffective therapyefficacy evaluationglucose uptakehelminth infectionhigh resolution imaginghuman subjectimaging biomarkerimaging modalityimprovedin vivoinnovationintraperitonealmetermouse modelneoplastic cellnovelnovel therapeuticspre-clinicalpredictive modelingquantitative imagingreconstructionresponsetranslational cancer researchtreatment responsetreatment strategytumortumor heterogeneitytumor microenvironment
项目摘要
Effective treatment for recurrent epithelial ovarian cancer is a major, unmet public health need as the
response rates of the patients are often low with the traditional chemotherapy. Repurposing drugs is an
increasingly popular strategy in oncology due to the financial and logistical constraints of new drug development.
Recently, anti-parasitic drugs such as mebendazole have surfaced as repurposed oncology drugs and showed
promise in treating multiple types of tumors. The anti-parasitic drugs, fenbendazole and mebendazole, are in the
benzimidazole class and have been FDA-approved to treat pinworm and other helminthic infections in humans
and animals for decades. The selectivity of these drugs for the parasite rather than the host is explained by
irreversible blockade of glucose uptake in the parasite, leading to glycogen depletion and degeneration of the
endoplasmic reticulum with eventual cell death. In addition, both fenbendazole and mebendazole inhibit
microtubule polymerization and function in parasites but not in humans or mammals, owing to differential key
residues, which create an inaccessible hydrophobic pocket to which the anti-parasitic drugs cannot bind.
Although these seem to be the mechanisms of action in parasites, the exact mechanism of their anti-cancer
effect in human cells is unknown. In order to investigate this issue, we hypothesize that by measuring and
quantifying changes of tumor morphology, vasculature, and density using the combination of two novel highresolution tissue imaging methods including optical coherence tomography (OCT) and fluorescence laminar
optical tomography (FLOT), drug mechanism of action and therapeutic effects can be accurately assessed in
vivo. The primary objective of this project is to thoroughly evaluate the anti-cancer effects of anti-parasitic drugs
in an ovarian cancer mouse model using OCT and FLOT. In order to validate our hypothesis and realize the
objective of this project, we propose the following three specific aims. Aim 1: To optimize calibration of
intraperitoneal post-necropsy tumor measurements in an ovarian cancer xenograft mouse model treated with
mebendazole using OCT and FLOT compared to standard electronic caliper measurements. Aim 2: To use OCT
and FLOT to characterize changes in blood vessel morphology upon exposure of an ovarian cancer xenograft
mouse model to mebendazole treatment. Aim 3: To use OCT and FLOT to measure superficial versus deep
tumor cell death and identify quantitative imaging markers for evaluating efficacy of mebendazole-based anticancer treatment. If successful, the results of this project will provide important information regarding anti-cancer
effects of mebendazole and also the convinced preliminary or pre-clinical data to support the research project
leader (RPL) to apply for a more comprehensive project (i.e., NIH R01 or DOD CDMRP Level 2 grant) to further
investigate and determine the optimal mechanism of applying this promising anti-parasitic drug to more
effectively treat epithelial ovarian cancer in the clinical study or trial involving human subjects.
复发性上皮性卵巢癌的有效治疗是一项未满足的重大公共卫生需求,因为
传统化疗患者的反应率通常较低。重新利用药物是一种
由于新药开发的财务和后勤限制,这一策略在肿瘤学领域日益流行。
最近,甲苯咪唑等抗寄生虫药物作为新用途的肿瘤药物出现,并显示出
有望治疗多种类型的肿瘤。抗寄生虫药物芬苯达唑和甲苯达唑属于
苯并咪唑类,已获得 FDA 批准用于治疗人类蛲虫和其他蠕虫感染
和动物几十年了。这些药物对寄生虫而不是宿主的选择性可以解释为
不可逆地阻断寄生虫中的葡萄糖摄取,导致糖原耗尽和组织退化
内质网最终导致细胞死亡。此外,芬苯达唑和甲苯咪唑均抑制
由于差异关键,微管聚合和功能在寄生虫中起作用,但在人类或哺乳动物中不起作用
残留物,形成抗寄生虫药物无法结合的难以接近的疏水袋。
虽然这些似乎是寄生虫的作用机制,但它们抗癌的确切机制
对人体细胞的影响尚不清楚。为了研究这个问题,我们假设通过测量和
结合使用两种新型高分辨率组织成像方法(包括光学相干断层扫描 (OCT) 和荧光层流成像)来量化肿瘤形态、脉管系统和密度的变化
光学断层扫描(FLOT)可准确评估药物作用机制和治疗效果
体内。该项目的主要目标是彻底评估抗寄生虫药物的抗癌效果
使用 OCT 和 FLOT 在卵巢癌小鼠模型中进行研究。为了验证我们的假设并实现
针对这个项目的目标,我们提出以下三个具体目标。目标 1:优化校准
卵巢癌异种移植小鼠模型的腹膜内尸检后肿瘤测量
使用 OCT 和 FLOT 与标准电子卡尺测量结果比较甲苯咪唑。目标 2:使用 OCT
和 FLOT 来表征卵巢癌异种移植物暴露后血管形态的变化
甲苯咪唑治疗小鼠模型。目标 3:使用 OCT 和 FLOT 测量浅层与深层
肿瘤细胞死亡并确定定量成像标记物以评估基于甲苯咪唑的抗癌治疗的疗效。如果成功,该项目的结果将提供有关抗癌的重要信息
甲苯咪唑的作用以及支持研究项目的令人信服的初步或临床前数据
领导者(RPL)申请更全面的项目(即 NIH R01 或 DOD CDMRP 2 级拨款)以进一步
研究并确定将这种有前途的抗寄生虫药物应用到更多领域的最佳机制
在涉及人类受试者的临床研究或试验中有效治疗上皮性卵巢癌。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren Elizabeth Dockery其他文献
Lauren Elizabeth Dockery的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren Elizabeth Dockery', 18)}}的其他基金
Use of 3D Quantitative Optical Methods to Optimize Mebendazole Treatment of Ovarian Cancer
使用 3D 定量光学方法优化甲苯咪唑治疗卵巢癌
- 批准号:
10654379 - 财政年份:2022
- 资助金额:
$ 18.08万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 18.08万 - 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 18.08万 - 项目类别:
Activity-dependent endocannabinoid control in epilepsy
癫痫的活动依赖性内源性大麻素控制
- 批准号:
10639147 - 财政年份:2023
- 资助金额:
$ 18.08万 - 项目类别:
Develop an engineered Cas effector for in vivo cell-targeted delivery in the eye to treat autosomal dominant BEST disease
开发工程化 Cas 效应器,用于眼内体内细胞靶向递送,以治疗常染色体显性 BEST 疾病
- 批准号:
10668167 - 财政年份:2023
- 资助金额:
$ 18.08万 - 项目类别: