Developing Personalized Predictive Models of Aggression
开发个性化的攻击性预测模型
基本信息
- 批准号:10662685
- 负责人:
- 金额:$ 18.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-15 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAffectAgeAggressive behaviorAngerBehaviorBehavior ControlBehavior DisordersBiologicalCellular PhoneComplexComputing MethodologiesDataData ReportingDetectionDevelopmentDiagnosisDiagnosticEtiologyFamilyFutureGoalsHeart RateHeterogeneityIndividualInterventionLifeMachine LearningMeasurementMental disordersMentorsMentorshipMethodologyMethodsModelingMotivationNational Institute of Mental HealthNatureParticipantPatient Self-ReportPatternPersonality TraitsPersonsPhenotypePhysiologicalPositioning AttributePreventionProcessProtocols documentationPsychological ModelsPsychopathologyPublic HealthResearchResearch DesignResearch EthicsResourcesRiskRisk FactorsSamplingScientific InquiryScientistSelection CriteriaSocial EnvironmentSurveysSystemTechnologyTestingTimeTrainingUniversitiesYouthadaptive interventionaggression preventionanalytical methodbehavioral phenotypingcareerdata streamseconomic impacteffective therapyemotion regulationforestgradient boostinghigh risk populationimprovedinclusion criteriainnovationmachine learning methodmobile sensingnovelpersonalized interventionpersonalized medicinepersonalized predictionspredictive modelingpredictive toolsprogramsprospectivepsychologicrandom forestreal time monitoringrecruitresearch studysensorskillssmartphone based devicetheorieswearable deviceyoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
Aggressive behavior is a transdiagnostic indicator of both youth and adult psychiatric disorders and a
significant public health concern due to the direct harms to victims and its broader economic impact.
Nonetheless, prediction of aggressive behavior is challenging due to significant variability in how, why, and
when people act aggressively. This heterogeneity impedes efforts to establish etiological factors, identify
biological substrates, and develop uniformly effective treatments. Though theories of aggression emphasize
that it is a context-dependent, dynamic interpersonal behavior, research rarely attempts to study aggression in
the contexts where it normally occurs and is most consequential (i.e., daily life). The current project seeks to
improve on past research by studying the transdiagnostic mechanisms of aggression using novel analytic and
measurement methodology necessary for pursuing a personalized medicine approach in aggressive behavior
research and prevention. This project will use real-time data capture in conjunction with state-of-the-art analytic
methods to deconstruct the heterogeneous behavioral phenotypes that relate to aggression. To achieve this,
we will use relevant passively-sensed and self-reported data via smartphones from a sample of young adults
(age=18-30; N=150) diagnosed with mental and behavioral disorders and at elevated risk for aggression. Data
will be collected over the course of a 3-week ambulatory assessment protocol. We will apply machine learning
methods capable of uncovering and modeling the complex dynamic processes observed in aggression at the
level of each individual (i.e., personalized models) to prospectively predict aggressive urges and behavior. The
results will pave the way for scalable just-in-time adaptive interventions tailored to an individual’s specific
antecedents of aggression. The proposed study will contribute to NIMH Strategic Priorities 3.2 by 1) focusing
on personalized models that can accommodate the complex topography of aggression and its antecedents and
2) applying innovative computational approaches (i.e., machine learning) to multiple streams of data (passively
sensed, self-report) to identify potential just-in-time intervention targets for aggressive individuals. The
comprehensive research and training plan detailed in this proposal will allow this candidate to address the
primary research questions of the proposal and develop the expertise necessary to be an independent
scientist. Specifically, this candidate will receive training in 1) personalized models of psychopathology and
aggression; 2) methods for carrying out EMA-based studies and modeling intensive longitudinal data; and 3)
collecting, processing, and predictive modeling with passive sensor data. This candidate has assembled a
team of expert mentors (Wright, Jacobson) and consultants who possess the expertise to supervise the project
and provide the training necessary to support the candidate in his development as an independent scientist.
The expertise of the mentorship team, and the resources offered by the University of Pittsburgh, place the
candidate in an ideal position to achieve his training, research, and career goals.
项目摘要/摘要
侵略性行为是青年和成人精神疾病的转诊指标,
由于对受害者的直接损害及其更广泛的经济影响,公共卫生的重大关注。
尽管如此,由于如何,为什么和
当人们积极行动时。这种异质性阻碍了建立病因的努力,确定
生物底物,并产生统一的有效治疗方法。尽管激进的理论强调
这是一种依赖上下文的,动态的人际行为,研究很少试图研究积极进取的
它通常发生和最重要的背景(即日常生活)。当前的项目试图
通过研究新的分析和
在攻击行为中追求个性化医学方法所必需的测量方法
研究与预防。该项目将与最先进的分析结合使用实时数据捕获
解构与攻击性有关的异质行为表型的方法。为此,
我们将通过来自年轻人样本的智能手机使用相关的被动感和自我报告的数据
(年龄= 18-30; n = 150)被诊断出患有精神和行为障碍,侵略性风险升高。数据
将在为期3周的门诊评估方案中收集。我们将应用机器学习
能够发现和建模在侵略性中观察到的复杂动态过程的方法
每个人(即个性化模型)的水平前瞻性预测侵略性和行为。这
结果将为根据个人特定的特定时间量身定制的可扩展及时的自适应干预措施铺平道路
侵略性的先例。拟议的研究将有助于NIMH战略优先级3.2 x 1)
在个性化模型上,可以适应侵略性及其先例的复杂地形
2)将创新的计算方法(即机器学习)应用于多个数据流(被动
感觉自我报告),以确定对侵略性个体的潜在及时干预目标。这
本提案中详细介绍的全面研究和培训计划将使该候选人能够解决
提案的主要研究问题,并发展成为独立的必要专业知识
科学家。特别是,该候选人将接受1)个性化的心理病理学模型和
挑衅的; 2)进行基于EMA的研究和建模密集纵向数据的方法; 3)
通过被动传感器数据收集,处理和预测性建模。这个候选人组装了
专家团队(赖特,雅各布森)和拥有专业知识来监督该项目的顾问
并提供必要的培训,以支持候选人作为独立科学家的发展。
Mentalship团队的专业知识以及匹兹堡大学提供的资源,放置
候选人处于实现培训,研究和职业目标的理想位置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Colin Vize其他文献
Colin Vize的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
儿童期受虐经历影响成年人群幸福感:行为、神经机制与干预研究
- 批准号:32371121
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
依恋相关情景模拟对成人依恋安全感的影响及机制
- 批准号:32200888
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
生活方式及遗传背景对成人不同生命阶段寿命及死亡的影响及机制的队列研究
- 批准号:82173590
- 批准年份:2021
- 资助金额:56.00 万元
- 项目类别:面上项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 18.02万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 18.02万 - 项目类别: