Motor cortex plasticity in temporal lobe epilepsy
颞叶癫痫的运动皮层可塑性
基本信息
- 批准号:10531903
- 负责人:
- 金额:$ 51.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AMPA ReceptorsAnimal ModelAnimalsAreaBehavioralBiochemicalBrainCause of DeathCell CountDataDevelopmentElectroencephalographyElectrophysiology (science)EpilepsyEstrogen ReceptorsExhibitsExperimental ModelsFDA approvedFOS geneFractureFrightGenetic RecombinationGlutamatesHippocampusImageImmediate-Early GenesInjuryInvestigationKnockout MiceLasersLong-Term PotentiationMapsMediatingMethodsMicroscopeModelingMolecularMonitorMotor CortexMotor SkillsMusNeocortexNeuronsPatientsPentylenetetrazolePersonsPharmaceutical PreparationsPopulationPropertyProsencephalonProteinsRefractoryReporterResearchRiskRisk FactorsRoleSeizuresSeminalSliceSoft Tissue InjuriesStatus EpilepticusStimulusStructureSynapsesTechniquesTemporal Lobe EpilepsyTestingTonic - clonic seizuresconditional knockoutdentate gyruseighth gradeexperimental studyhippocampal pyramidal neuroninsightkainateknockout animalmotor learningneocorticalnovelpatch clamppostsynapticpromoterresponseskill acquisitionsudden unexpected death in epilepsytherapeutic targetthird gradetransmission process
项目摘要
Project summary
Grand mal (great malady) seizures, now called generalized tonic clonic seizures (GTCS), are the most feared
seizures because they can cause death and injury. Repeated GTCSs are the leading risk factor for sudden
unexpected death in epilepsy (SUDEP), which is a leading cause of death in persons with epilepsy. GTCS also
leads to fractures and soft tissue injuries. It is long known that the motor cortex generates these seizures and
seizures modify the motor cortex. However, the cellular and molecular mechanisms of seizure-induced
reorganization of the motor cortex have not been studied. Furthermore, it is not known whether a GTCS makes
subsequent seizures more severe. We propose that GTCS enhance the excitability of a subset of motor cortex
pyramidal neurons by enhancing AMPA receptor mediated excitation. We found that GluA1 subunit of the
AMPA receptor was essential for expressing kindling-induced (grade 5) GTCS. We kindled mice lacking the
GluA1 subunit of AMPA receptors and their wild-type (WT) littermates using traditional kindling methods.
Whereas WT animals progressed to sustained convulsive GTCS (grade 4 & 5), but knockout animals neither
attained nor sustained GTCS, despite repeated stimulation. Furthermore, two (WT) animals died following
GTCS, while none of the KO animals died. In Aim 1, we propose to characterize the role of the GluA1 subunit
of AMPA receptors in sustaining repeated GTCSs using a combination of conditional knockout mice and
biochemical techniques in intrahippocampal kainate (IHK) and kindling models of TLE. Behavioral seizures
also become more intense when fully kindled animals were stimulated. Much larger volume of the cortex was
active during the 8th GTCS compared to the neocortical activation observed after the 3rd GTCS. Motor cortex
cell counts revealed that many more neurons in the motor cortex expressed c-fos in response to the fifth GTCS
compared to the first GTCS. In Aim 2 experiments, we propose to confirm and expand these findings. we will
compare cortical circuit activity maps and behavioral seizures in response to the first or fifth GTCS in kindling
and IHK TLE models. We compared the electrophysiological properties of motor cortex pyramidal neurons that
expressed c-fos in response to GTCSs with those of surrounding neurons that did not express c-fos and found
surprising differences. Motor cortex pyramidal neurons expressing c-fos were more excitable and
demonstrated enhanced AMPA receptor-mediated excitatory post synaptic currents. In Aim 3, we propose to
compare the excitability and excitatory transmission of layer 2/3 and layer 4/5 pyramidal neurons expressing c-
fos in response to a grade 5 kindled seizure using patch clamp recordings. These studies open a novel area of
epilepsy research, focusing on the effects of GTCS on the neocortex using a combination combine novel,
state-of-the-art techniques.
项目概要
大病(大病)癫痫发作,现在称为全身强直阵挛癫痫发作(GTCS),是最令人恐惧的
癫痫发作,因为它们可能导致死亡和受伤。重复的 GTCS 是突发事件的主要风险因素
癫痫意外死亡(SUDEP)是癫痫患者死亡的主要原因。 GTCS 还
导致骨折和软组织损伤。众所周知,运动皮层会产生这些癫痫发作并
癫痫发作会改变运动皮层。然而,癫痫诱发的细胞和分子机制
运动皮层的重组尚未被研究。此外,尚不清楚 GTCS 是否使
随后的癫痫发作更加严重。我们建议 GTCS 增强运动皮层子集的兴奋性
锥体神经元通过增强 AMPA 受体介导的兴奋。我们发现 GluA1 亚基
AMPA 受体对于表达引火诱导的(5 级)GTCS 至关重要。我们点燃了缺乏
使用传统点燃方法观察 AMPA 受体的 GluA1 亚基及其野生型 (WT) 同窝小鼠。
WT 动物进展为持续性惊厥 GTCS(4 级和 5 级),但基因敲除动物则没有
尽管反复受到刺激,但仍无法达到或维持 GTCS。此外,两只(WT)动物死亡后
GTCS,而没有一只 KO 动物死亡。在目标 1 中,我们建议描述 GluA1 亚基的作用
AMPA 受体在维持重复 GTCS 中使用条件敲除小鼠和
海马内红藻氨酸 (IHK) 的生化技术和 TLE 点燃模型。行为性癫痫发作
当完全点燃的动物受到刺激时,也会变得更加强烈。皮质的体积要大得多
与第 3 个 GTCS 后观察到的新皮质激活相比,第 8 个 GTCS 期间的激活。运动皮层
细胞计数显示,运动皮层中有更多神经元表达 c-fos,以响应第五次 GTCS
与第一个 GTCS 相比。在目标 2 实验中,我们建议确认并扩展这些发现。我们将
比较点燃中第一个或第五个 GTCS 的皮质回路活动图和行为癫痫发作
和 IHK TLE 模型。我们比较了运动皮层锥体神经元的电生理特性
与周围不表达 c-fos 的神经元一起表达 c-fos 以响应 GTCS,并发现
令人惊讶的差异。表达 c-fos 的运动皮层锥体神经元更容易兴奋并且
证明 AMPA 受体介导的兴奋性突触后电流增强。在目标 3 中,我们建议
比较表达 c 的 2/3 层和 4/5 层锥体神经元的兴奋性和兴奋性传递-
使用膜片钳记录 fos 来响应 5 级点燃癫痫发作。这些研究开辟了一个新领域
癫痫研究,重点关注 GTCS 使用新颖的组合对新皮质的影响,
最先进的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaideep Kapur其他文献
Jaideep Kapur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaideep Kapur', 18)}}的其他基金
Secondarily generalized tonic clonic seizure; a functional anatomy
继发性全身强直阵挛发作;
- 批准号:
10317485 - 财政年份:2021
- 资助金额:
$ 51.17万 - 项目类别:
Motor cortex plasticity in temporal lobe epilepsy
颞叶癫痫的运动皮层可塑性
- 批准号:
10180351 - 财政年份:2021
- 资助金额:
$ 51.17万 - 项目类别:
Motor cortex plasticity in temporal lobe epilepsy
颞叶癫痫的运动皮层可塑性
- 批准号:
10377990 - 财政年份:2021
- 资助金额:
$ 51.17万 - 项目类别:
Secondarily generalized tonic clonic seizure; a functional anatomy
继发性全身强直阵挛发作;
- 批准号:
10672269 - 财政年份:2021
- 资助金额:
$ 51.17万 - 项目类别:
Mechanism and Treatment of nerve agent-induced seizures
神经毒剂诱发癫痫发作的机制和治疗
- 批准号:
7473892 - 财政年份:2006
- 资助金额:
$ 51.17万 - 项目类别:
Mechanism and Treatment of nerve agent-induced seizures
神经毒剂引起的癫痫发作的机制和治疗
- 批准号:
7292646 - 财政年份:2006
- 资助金额:
$ 51.17万 - 项目类别:
Mechanism and Treatment of nerve agent-induced seizures
神经毒剂诱发癫痫发作的机制和治疗
- 批准号:
7224508 - 财政年份:2006
- 资助金额:
$ 51.17万 - 项目类别:
Mechanism and Treatment of nerve agent-induced seizures
神经毒剂诱发癫痫发作的机制和治疗
- 批准号:
7634445 - 财政年份:2006
- 资助金额:
$ 51.17万 - 项目类别:
Mechanism and Treatment of nerve agent-induced seizures
神经毒剂诱发癫痫发作的机制和治疗
- 批准号:
7883287 - 财政年份:2006
- 资助金额:
$ 51.17万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering the role of SAP97 in synaptic function and schizophrenia.
揭示 SAP97 在突触功能和精神分裂症中的作用。
- 批准号:
10736790 - 财政年份:2023
- 资助金额:
$ 51.17万 - 项目类别:
Kainate Receptors as a Target for the Anticonvulsant Perampanel
红藻氨酸受体作为抗惊厥药吡仑帕奈的靶点
- 批准号:
10452382 - 财政年份:2022
- 资助金额:
$ 51.17万 - 项目类别:
Kainate Receptors as a Target for the Anticonvulsant Perampanel
红藻氨酸受体作为抗惊厥药吡仑帕奈的靶点
- 批准号:
10593958 - 财政年份:2022
- 资助金额:
$ 51.17万 - 项目类别:
Motor cortex plasticity in temporal lobe epilepsy
颞叶癫痫的运动皮层可塑性
- 批准号:
10180351 - 财政年份:2021
- 资助金额:
$ 51.17万 - 项目类别: