Towards Identifying Optimal NICU Admission Criteria for Late Preterm Infants
确定晚期早产儿最佳 NICU 入院标准
基本信息
- 批准号:10536584
- 负责人:
- 金额:$ 8.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-27 至 2025-07-26
- 项目状态:未结题
- 来源:
- 关键词:37 weeks gestationAddressAdmission activityBirthBirth WeightBreast FeedingCareer ChoiceCaringClinicalDataData AnalysesData SetEnvironmentEvaluationEventFellowshipFrequenciesGestational AgeGoalsGrantHealthcare SystemsHospitalizationHospitalsHyperbilirubinemiaHypoglycemiaIncidenceInfantInfant CareInstitutionInterventionK-Series Research Career ProgramsLeadLifeLiteratureLive BirthLocationMedicalMethodologyMethodsModelingMorbidity - disease rateMothersNeonatal Intensive Care UnitsNewborn InfantNurseriesOutcomePatientsPediatric HospitalsPhysiciansPregnancyPremature InfantProtocols documentationReportingResearchResearch DesignResourcesRespiratory distressRetrospective cohortRiskSavingsScientistSensitivity and SpecificitySeverity of illnessSiteStressSymptomsTechniquesTemperatureTestingTimeTrainingUnited StatesUniversitiesValidationVariantWritingbasecareerclassification treesclinical decision-makingcohortcostevidence basehigh riskinfection risklensneonatal morbiditypredictive modelingregression treesskills
项目摘要
Late preterm (34-36 weeks gestational age) infants account for 7% of the 3.76 million live births in the United
States annually, or over 263,000 infants each year. Compared to term infants, late preterm infants are at
increased risk of morbidity from outcomes such as hypoglycemia, temperature instability and
hyperbilirubinemia, and often require medical intervention in a neonatal intensive care unit (NICU). Thus, while
the vast majority of infants born at term stay with their mothers in a well infant (level I) nursery during the birth
hospitalization, many late preterm infants are instead hospitalized in the NICU where they may be separated
from their mothers. However, significant variation exists amongst hospitals for NICU admission rates and
clinical thresholds for admission in late preterm infants that is not explained by clinical illness. Preliminary data
obtained by the PI suggests that institutional criteria for requiring automatic NICU admission in late preterm
infants can vary from 34-37 weeks gestational age and 1500-2500 grams birth weight. This represents late
preterm infants of varying maturity and size, and likely does not precisely capture infants who are at highest
risk of needing NICU level interventions. The goal of this proposal is to identify optimal NICU admission criteria
for late preterm infants. A large retrospective cohort of late preterm infants born at a single institution will be
assembled, collecting data on admission locations, and occurrence and management of late preterm
morbidities. With this, Aim 1 will be addressed: identify the frequency of neonatal morbidities amongst infants
born at 34-36 weeks’ gestation, and the frequency of these morbidities requiring medical intervention.
Literature on the frequency of morbidities in late preterm infants is limited, and none currently exists delineating
the proportion of these morbidities that require clinical intervention. Subsequently, in Aim 2: a prediction model
will be developed for which late preterm infants are most likely to benefit from automatic admission to a NICU
at the time of birth. The cohort generated in Aim 1 will be utilized to compare clinical parameters of infants who
required at least one NICU level intervention to those that did not require any. Training and test data sets will
be established. Using cross-validation techniques within the training set, an optimal cut-point for a score
derived from the predictive model will be chosen to drive clinical decision-making based on the sensitivity and
specificity of the decision rule. The strategy will be evaluated on a test set. The obtained prediction model will
be a resource towards informing optimal NICU admission criteria for late preterm infants. The PI will train in
study design methodology, data analysis, modeling, and grant writing during this fellowship that will advance
her career path towards an independent physician scientist focused on identifying high value care practices
that safely promote an intact mother-infant dyad in newborn care. She will benefit from the world-class
research and clinical environment, and renowned expertise at Stanford University.
在美国 376 万活产婴儿中,晚期早产儿(胎龄 34-36 周)占 7%
各州每年有超过 263,000 名婴儿与足月婴儿相比,晚期早产儿处于这一水平。
低血糖、体温不稳定等结果导致发病的风险增加
高胆红素血症,通常需要在新生儿重症监护室 (NICU) 进行医疗干预。
绝大多数足月出生的婴儿在出生期间与母亲一起住在健康婴儿(I 级)托儿所
住院治疗,许多晚期早产儿被送往新生儿重症监护病房(NICU)住院,在那里他们可能会被隔离
然而,不同医院的新生儿重症监护病房 (NICU) 入院率和住院率存在显着差异。
无法用临床疾病解释的晚期早产儿入院的临床阈值。
PI 获得的结果表明,要求早产晚期自动进入 NICU 的机构标准
婴儿的胎龄为 34-37 周,出生体重为 1500-2500 克,这代表晚期。
不同成熟度和大小的早产儿,并且可能无法准确捕获最高的婴儿
需要 NICU 级别干预的风险 该提案的目标是确定最佳 NICU 入院标准。
对于在同一机构出生的晚期早产儿的大型回顾性队列。
集合、收集有关入院地点以及晚期早产的发生和管理的数据
由此,目标 1 将得到解决:确定婴儿中新生儿发病的频率。
妊娠 34-36 周出生,以及这些疾病需要医疗干预的频率。
关于晚期早产儿发病频率的文献有限,目前尚无文献描述
随后,目标 2:预测模型。
将开发晚期早产儿最有可能从自动入住新生儿重症监护病房(NICU)中受益的方法
目标 1 中生成的队列将用于比较出生时的婴儿的临床参数。
对于那些不需要任何培训和测试数据集的人来说,需要至少一次 NICU 级别的干预。
使用训练集中的交叉验证技术,建立分数的最佳切点。
将选择从预测模型导出的数据来根据敏感性和敏感性来推动临床决策
决策规则的特异性将在测试集上进行评估。
成为告知晚期早产儿最佳 NICU 入院标准的资源 PI 将接受培训。
在此奖学金期间学习设计方法、数据分析、建模和资助写作,这将推进
她成为独立医师科学家的职业道路专注于识别高价值护理实践
她将受益于世界一流的新生儿护理。
斯坦福大学的研究和临床环境以及著名的专业知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NEHA SHIRISH JOSHI其他文献
NEHA SHIRISH JOSHI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NEHA SHIRISH JOSHI', 18)}}的其他基金
Towards Identifying Optimal NICU Admission Criteria for Late Preterm Infants
确定晚期早产儿最佳 NICU 入院标准
- 批准号:
10678642 - 财政年份:2022
- 资助金额:
$ 8.11万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Towards Identifying Optimal NICU Admission Criteria for Late Preterm Infants
确定晚期早产儿最佳 NICU 入院标准
- 批准号:
10678642 - 财政年份:2022
- 资助金额:
$ 8.11万 - 项目类别:
Labor Status Monitor for diagnosing True versus False Labor in preterm patients
用于诊断早产患者真假临产的临产状态监测仪
- 批准号:
10484554 - 财政年份:2022
- 资助金额:
$ 8.11万 - 项目类别:
Female-Specific Risk Factors for CVD: The Impact of Adverse Pregnancy Outcomes on Subsequent Mental Health and CVD Risk
女性特定的 CVD 危险因素:不良妊娠结局对后续心理健康和 CVD 风险的影响
- 批准号:
10524644 - 财政年份:2022
- 资助金额:
$ 8.11万 - 项目类别:
Pharmacokinetic/Pharmacodynamic model in pregnant women with depression to guide sertraline dosing
抑郁症孕妇的药代动力学/药效学模型指导舍曲林给药
- 批准号:
10390578 - 财政年份:2022
- 资助金额:
$ 8.11万 - 项目类别:
Promoting stretching exercise to reduce cardiovascular health risk in late pregnant women with obesity
促进伸展运动可降低妊娠晚期肥胖妇女的心血管健康风险
- 批准号:
10404625 - 财政年份:2019
- 资助金额:
$ 8.11万 - 项目类别: