DNA damage response and cancer immunity
DNA损伤反应和癌症免疫
基本信息
- 批准号:10523886
- 负责人:
- 金额:$ 46.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdenosineBase Excision RepairsCD8-Positive T-LymphocytesCD8B1 geneCDC2 geneCT26Cancer ModelCancer PatientCell CycleCell Cycle CheckpointCell Cycle KineticsCellsCessation of lifeChemotherapy and/or radiationClinical TrialsCyclin-Dependent KinasesCytidineDNADNA DamageDNA Double Strand BreakDNA RepairDNA Repair PathwayDNA SequenceDNA biosynthesisDNA replication forkDNA-Directed RNA PolymeraseDataDose-LimitingExcisionExcision RepairGenetic TranscriptionGenetically Engineered MouseGenomeGenome StabilityGenomic DNAGoalsGuanosineImmuneImmune responseImmunologic MemoryImmunotherapyIn VitroInbred BALB C MiceInterferonsIonizing radiationKineticsKnock-outLaboratoriesLicensingLymphopeniaMCM4 geneMalignant NeoplasmsMediatingMusMutationPhosphotransferasesRNARadiation therapyReportingRibonucleosidesRibonucleotidesS phaseSignal TransductionSystemT cell responseT cell therapyTestingThymidineToxic effectTransplantationTumor ImmunityTumor-infiltrating immune cellsUracilUridineanti-tumor immune responseataxia telangiectasia mutated proteincancer cellcell killingcell typechemotherapyhelicaseimmune checkpoint blockadein vivoinhibitorinnovationkinase inhibitormouse modelnovel strategiesrepairedresponsetransplant modeltumoruracil-DNA glycosylase
项目摘要
The overarching goal of our laboratory is to determine how DNA damage response inhibitors (DDRi) can be used
to potentiate cancer cell killing while concurrently increasing anti-tumor immune responses after radiation therapy
(XRT). The DNA Damage Response (DDR) is a signaling system that integrates DNA repair pathways and the
cell cycle to safeguard genome stability. In addition to activating cell cycle checkpoints and DNA repair in cells
treated with XRT, the DDR limits origin firing and delays cell cycle transitions in unstressed cells. While cyclin-
dependent kinases are cell cycle accelerators, DDR kinases are cell cycle brakes and, in this analogy, DDRi
disable the brakes, causing unchecked acceleration. Here we will determine how the DDR is rewired in CD8+ T
cells to accommodate massive and concomitant DNA replication and transcription in S phase. We will also
determine the impact of DDRi in cancer and immune cells. We hypothesize that ATR kinase inhibitors induce
origin firing that causes ribonucleosides to be mis-incorporated into the genome, and that this generates chimeric
RNA-DNA fragments and type I IFN-dependent immunologic memory after XRT. To test our hypothesis in cancer
and immune cells, we have generated an innovative transplantable model of cancer. The Mcm4Chaos3/Chaos3
mouse carries a mutation in Mcm4 that destabilizes the replicative helicase. Cells derived from Mcm4Chaos3/Chaos3
mice have a 60% reduction in origin licensing. We have generated Mcm4Chaos3/Chaos3 B16 cancer cells that can
be transplanted into Mcm4wt/wt and Mcm4Chaos3/Chaos3 mice. This will allow us to separate the function of ATR that
limits origin firing from that which mediates the repair of replication forks in cancer and immune cells. In Aim 1,
we will define cell cycle kinetics and determine how ATR inhibitors induce DNA damage in immune and cancer
cells in vitro. In Aim 2, we will define cell cycle kinetics and determine whether ATR inhibitors induce DNA
damage in immune cells and type 1 interferons in vivo. In Aim 3, we will determine whether ATR inhibitors
combine with XRT to generate durable responses and immunologic memory through effects on immune and/or
cancer cells. Successful completion of this project will define how the DDR is rewired in CD8+ T cells to
accelerate cell cycle transitions and accommodate massive and concomitant DNA replication and transcription
in S phase which, accounts for ~70% of the cell cycle as G1 is abridged. These studies are highly significant as
the objective of checkpoint blockade and adoptive T cell transfer is to induce rapid division in CD8+ T cells.
Successful completion of this project will identify combinations and sequences of DDRi that potentiate cancer
cell killing while concurrently increasing anti-tumor immune responses in mouse models of cancer treated with
XRT. These studies are highly significant as we use DDRi that are currently in 115 clinical trials and XRT which
is used to treat >50% of cancer patients, >60% with curative intent.
我们实验室的首要目标是确定如何使用 DNA 损伤反应抑制剂 (DDRi)
增强癌细胞杀伤力,同时增强放射治疗后的抗肿瘤免疫反应
(XRT)。 DNA 损伤反应 (DDR) 是一个信号系统,整合了 DNA 修复途径和
细胞周期以维护基因组稳定性。除了激活细胞周期检查点和细胞内 DNA 修复
经过 XRT 处理后,DDR 限制了无应激细胞的起源放电并延迟了细胞周期转变。当细胞周期蛋白-
依赖性激酶是细胞周期加速器,DDR 激酶是细胞周期制动器,在这个类比中,DDRi
禁用刹车,导致不受控制的加速。这里我们将确定CD8+ T中DDR如何重新布线
细胞在 S 期适应大量且伴随的 DNA 复制和转录。我们也会
确定 DDRi 对癌症和免疫细胞的影响。我们假设 ATR 激酶抑制剂诱导
起源激发导致核糖核苷被错误地掺入基因组中,从而产生嵌合体
XRT 后的 RNA-DNA 片段和 I 型 IFN 依赖性免疫记忆。检验我们的癌症假设
和免疫细胞,我们已经产生了一种创新的可移植癌症模型。 Mcm4Chaos3/Chaos3
小鼠携带 Mcm4 突变,导致复制解旋酶不稳定。源自 Mcm4Chaos3/Chaos3 的细胞
小鼠的原产地许可减少了 60%。我们已经生成了 Mcm4Chaos3/Chaos3 B16 癌细胞,可以
移植到 Mcm4wt/wt 和 Mcm4Chaos3/Chaos3 小鼠中。这将使我们能够分离 ATR 的功能
限制介导癌症和免疫细胞中复制叉修复的起源发射。在目标 1 中,
我们将定义细胞周期动力学并确定 ATR 抑制剂如何在免疫和癌症中诱导 DNA 损伤
体外细胞。在目标 2 中,我们将定义细胞周期动力学并确定 ATR 抑制剂是否诱导 DNA
体内免疫细胞和 1 型干扰素的损伤。在目标 3 中,我们将确定 ATR 抑制剂是否
与 XRT 结合,通过对免疫和/或
癌细胞。该项目的成功完成将定义 DDR 如何在 CD8+ T 细胞中重新连接以
加速细胞周期转变并适应大规模且伴随的 DNA 复制和转录
处于 S 期,由于 G1 期被缩短,因此约占细胞周期的 70%。这些研究非常重要,因为
检查点阻断和过继性 T 细胞转移的目的是诱导 CD8+ T 细胞快速分裂。
该项目的成功完成将确定增强癌症的 DDRi 组合和序列
细胞杀伤,同时增加抗肿瘤免疫反应的小鼠癌症模型
XRT。这些研究非常重要,因为我们使用目前正在进行 115 项临床试验的 DDRi 和 XRT
用于治疗>50%的癌症患者,>60%具有治愈目的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRISTOPHER J. BAKKENIST其他文献
CHRISTOPHER J. BAKKENIST的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRISTOPHER J. BAKKENIST', 18)}}的其他基金
DNA damage signaling to dormant origins of replication
DNA 损伤向休眠复制起点发出信号
- 批准号:
9912242 - 财政年份:2019
- 资助金额:
$ 46.19万 - 项目类别:
DNA damage signaling to dormant origins of replication
DNA 损伤向休眠复制起点发出信号
- 批准号:
10532695 - 财政年份:2019
- 资助金额:
$ 46.19万 - 项目类别:
DNA damage signaling to dormant origins of replication
DNA 损伤向休眠复制起点发出信号
- 批准号:
10063854 - 财政年份:2019
- 资助金额:
$ 46.19万 - 项目类别:
DNA damage signaling to dormant origins of replication
DNA 损伤向休眠复制起点发出信号
- 批准号:
10295771 - 财政年份:2019
- 资助金额:
$ 46.19万 - 项目类别:
Regulation of DNA replication fork progression by ATM kinase activity
ATM 激酶活性调节 DNA 复制叉进程
- 批准号:
8447599 - 财政年份:2011
- 资助金额:
$ 46.19万 - 项目类别:
相似国自然基金
N6-甲基腺苷(m6A)修饰的LINC00673通过调节SRSF3稳定性促进乳腺癌转移和化疗耐药的机制研究
- 批准号:82303500
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全新单磷酸腺苷化修饰催化结构域S-HxxxE的发现及在病原菌感染中的作用
- 批准号:32370185
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
去腺苷酸化酶CNOT6L抑制结肠炎癌转化中CD8+T细胞功能的分子机制及其靶标属性探讨
- 批准号:82304557
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
N6-甲基腺苷修饰的circ_0048766参与三阴性乳腺癌生长转移和免疫逃逸的功能及其机制研究
- 批准号:82360468
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中性粒细胞凋亡囊泡通过ENPP1-NT5E-腺苷通路调节炎症反应促进口腔黏膜再生的机制研究
- 批准号:82301099
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Determining the role of RNA abasic sites in gene regulation
确定 RNA 无碱基位点在基因调控中的作用
- 批准号:
10572004 - 财政年份:2023
- 资助金额:
$ 46.19万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10641934 - 财政年份:2022
- 资助金额:
$ 46.19万 - 项目类别:
Origins of DNA damage driving pathology in human neurodegeneration
DNA损伤驱动人类神经变性病理学的起源
- 批准号:
10569616 - 财政年份:2022
- 资助金额:
$ 46.19万 - 项目类别:
The non-catalytic function of PARP2 in DNA repair and cancer therapy
PARP2在DNA修复和癌症治疗中的非催化功能
- 批准号:
10540084 - 财政年份:2022
- 资助金额:
$ 46.19万 - 项目类别: