The effects of Alzheimer's disease risk genes on metabolism and signaling across cell types
阿尔茨海默病风险基因对跨细胞类型代谢和信号传导的影响
基本信息
- 批准号:10524301
- 负责人:
- 金额:$ 394.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:ATP-Binding Cassette TransportersAffectAgingAlgorithmsAllelesAlzheimer&aposs DiseaseAlzheimer&aposs disease patientAlzheimer&aposs disease riskAmericanAmyloid beta-ProteinApolipoprotein EAstrocytesAutomobile DrivingAutopsyBehavioralBig DataBindingBlood - brain barrier anatomyBrainCell CommunicationCell LineCell physiologyCellsCellular StressComplexComputer AnalysisComputer ModelsDataDevelopmentDiseaseEtiologyFutureGenesGeneticGenotypeHumanIn VitroIndividualInflammatoryLate Onset Alzheimer DiseaseLate-Onset DisorderLeadLinkLipidsMetabolicMetabolic stressMetabolismMethodsMicrogliaModelingNeuronsOnset of illnessOrganoidsOutcomeOxidative StressPathogenicityPathologicPathway interactionsPatientsPericytesPhasePhenotypePopulationPost-Translational Protein ProcessingProteomicsRecording of previous eventsRegulatory PathwayResearch PriorityRiskSamplingSerumSignal PathwaySignal TransductionSmall Nuclear RNAStressSystems BiologyTestingTherapeuticTissuesUnited States National Institutes of HealthVariantWorkacute stressbasecausal modelcell typedesigndisorder riskeffective therapyenvironmental stressorgenetic risk factorgenome wide association studyhigh riskinduced pluripotent stem celllipid metabolismlipidomicsmetabolomicsmultiple omicsneurovascular unitpredictive modelingprematurerare variantresponserisk variantstressorthree dimensional cell culture
项目摘要
Summary
Alzheimer's disease (AD) is pervasive and debilitating, with no truly effective treatments.
Genome wide association studies have found risk variants for sporadic, late-onset AD, but the
mechanisms driving this risk are still unknown. Two of the sAD variants with the highest
association with development of AD are in Apolipoprotein E (APOE) and ATP-binding cassette
transporter A7 (ABCA7), both of which are involved in lipid metabolism. Our prior work
demonstrates that the E4 allele of APOE (APOE4) has cell type specific effects, including
alterations in lipid metabolism, but important questions remain about the downstream pathways
affected by this allele. Critically, we do not know how APOE4-induced changes interact with
aging-related stress, leading to late-onset disease. Even less is known about how ABCA7
alleles lead to increased risk of AD. We propose to use a systems biology approach to discover
these AD-risk pathways, responding to NOT-AG-18-052 from the NIH, which designates
“systems biology of brain neural cells derived from human AD induced pluripotent stem cells” as
a high-priority research topic. Our approach uses multi-omic analysis of induced pluripotent
stem cell (iPSC) lines that are isogenic for two risk variants, APOE4 or ABCA7 premature
termination (PTC), which can then be differentiated into diverse cell types. Using an unbiased
approach, we will reveal how AD-risk alleles alter signaling, metabolism, and states of the cells,
how they affect individual cells as well as cell-cell interactions in complex cultures, and how they
alter cellular responses to acute stress. In Aim 1 we will deeply characterize the effects of
APOE4 and ABCA7 PTC in 2D culture models of neurons, astrocytes, microglia and pericytes,
differentiated from isogenic iPSC lines, examining changes in metabolism and post-translational
modifications (PTMs) of proteins. We will use advanced network optimization methods to
integrate the disparate data and to uncover molecular interaction networks that link together
changes observed in the individual omics. In Aim 2, we investigate the pathways altered by risk
alleles that influence cell-cell interactions in 3D culture models, using spatially-resolved PTM-
proteomics and metabolomics/lipidomics and causal computational models. In Aim 3, we will
examine the intersection of risk variant with environmental and cellular stressors in the 3D
culture models. Each aim includes rigorous testing of hypotheses in vitro and by examination of
postmortem samples.
概括
阿尔茨海默氏病 (AD) 普遍存在且令人衰弱,目前尚无真正有效的治疗方法。
全基因组关联研究发现了散发性迟发性 AD 的风险变异,但
导致这种风险的机制仍然未知,其中两个 SAD 变体的风险最高。
载脂蛋白 E (APOE) 和 ATP 结合盒与 AD 发展相关
转运蛋白 A7 (ABCA7),两者都参与脂质代谢。
证明 APOE (APOE4) 的 E4 等位基因具有细胞类型特异性效应,包括
脂质代谢的改变,但下游途径仍然存在重要问题
重要的是,我们不知道 APOE4 诱导的变化如何相互作用。
与衰老相关的压力会导致迟发性疾病,而关于 ABCA7 是如何导致的,我们知之甚少。
等位基因会导致 AD 风险增加,我们建议使用系统生物学方法来发现。
这些 AD 风险途径,响应 NIH 的 NOT-AG-18-052,指定
“源自人类 AD 诱导多能干细胞的脑神经细胞的系统生物学”
我们的方法使用诱导多能的多组学分析。
两种风险变异(APOE4 或 ABCA7 过早)同基因的干细胞 (iPSC) 系
终止(PTC),然后可以使用无偏性分化为不同的细胞类型。
通过这种方法,我们将揭示 AD 风险等位基因如何改变细胞的信号传导、新陈代谢和状态,
它们如何影响复杂培养物中的单个细胞以及细胞与细胞的相互作用,以及它们如何
在目标 1 中,我们将深入描述细胞对急性应激的反应。
神经元、星形胶质细胞、小胶质细胞和周细胞二维培养模型中的 APOE4 和 ABCA7 PTC,
与同基因 iPSC 系区分开来,检查代谢和翻译后的变化
我们将使用先进的网络优化方法来进行蛋白质修饰(PTM)。
整合不同的数据并揭示链接在一起的分子相互作用网络
在目标 2 中观察到的个体组学变化,我们研究了风险改变的途径。
使用空间解析 PTM- 影响 3D 培养模型中细胞间相互作用的等位基因
在目标 3 中,我们将蛋白质组学和代谢组学/脂质组学和因果计算模型。
在 3D 中检查风险变异与环境和细胞压力源的交叉点
每个目标都包括严格的体外假设测试和检验
尸检样本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ernest Fraenkel其他文献
Ernest Fraenkel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ernest Fraenkel', 18)}}的其他基金
Identifying therapeutic pathways targeting medulloblastoma-immune cell interactions
确定针对髓母细胞瘤-免疫细胞相互作用的治疗途径
- 批准号:
10400097 - 财政年份:2021
- 资助金额:
$ 394.43万 - 项目类别:
Identifying therapeutic pathways targeting medulloblastoma-immune cell interactions
确定针对髓母细胞瘤-免疫细胞相互作用的治疗途径
- 批准号:
10219682 - 财政年份:2021
- 资助金额:
$ 394.43万 - 项目类别:
Identifying therapeutic pathways targeting medulloblastoma-immune cell interactions
确定针对髓母细胞瘤-免疫细胞相互作用的治疗途径
- 批准号:
10615653 - 财政年份:2021
- 资助金额:
$ 394.43万 - 项目类别:
Epigenetic pathology and therapy in Huntington's disease
亨廷顿病的表观遗传学病理学和治疗
- 批准号:
9988602 - 财政年份:2015
- 资助金额:
$ 394.43万 - 项目类别:
Epigenetic pathology and therapy in Huntington's disease
亨廷顿病的表观遗传学病理学和治疗
- 批准号:
10223442 - 财政年份:2015
- 资助金额:
$ 394.43万 - 项目类别:
Epigenetic pathology and therapy in Huntington's disease
亨廷顿病的表观遗传学病理学和治疗
- 批准号:
10411989 - 财政年份:2015
- 资助金额:
$ 394.43万 - 项目类别:
Epigenetic Pathology and Therapy in Huntington's Disease
亨廷顿病的表观遗传学病理学和治疗
- 批准号:
10630937 - 财政年份:2015
- 资助金额:
$ 394.43万 - 项目类别:
Epigenetic pathology and therapy in Huntington's disease
亨廷顿病的表观遗传学病理学和治疗
- 批准号:
9121773 - 财政年份:2015
- 资助金额:
$ 394.43万 - 项目类别:
相似国自然基金
生物炭原位修复底泥PAHs的老化特征与影响机制
- 批准号:42307107
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
光老化微塑料持久性自由基对海洋中抗生素抗性基因赋存影响机制
- 批准号:42307503
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
METTL3通过m6A甲基化修饰NADK2调节脯氨酸代谢和胶原合成影响皮肤光老化的机制研究
- 批准号:82360625
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
河口潮滩中轮胎磨损颗粒的光老化特征及对沉积物氮素转化的影响与机制
- 批准号:42307479
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Neuronal ABCA7 loss of function and Alzheimer’s disease
神经元 ABCA7 功能丧失与阿尔茨海默病
- 批准号:
10629715 - 财政年份:2023
- 资助金额:
$ 394.43万 - 项目类别:
Targeting AbcA1 and Ldlr production for the Discoveryof Alzheimer's disease Drugs
靶向 AbcA1 和 Ldlr 的产生以发现阿尔茨海默病药物
- 批准号:
10412623 - 财政年份:2022
- 资助金额:
$ 394.43万 - 项目类别:
Targeting AbcA1 and Ldlr production for the Discoveryof Alzheimer's disease Drugs
靶向 AbcA1 和 Ldlr 的产生以发现阿尔茨海默病药物
- 批准号:
10797916 - 财政年份:2022
- 资助金额:
$ 394.43万 - 项目类别:
Peroxisomal fatty acid metabolism in genetic and age-related disorders
遗传和年龄相关疾病中的过氧化物酶体脂肪酸代谢
- 批准号:
10559614 - 财政年份:2022
- 资助金额:
$ 394.43万 - 项目类别:
Microsomal Transfer Protein Modulates Lipoprotein Metabolism and Retinal lipid Homeostasis
微粒体转移蛋白调节脂蛋白代谢和视网膜脂质稳态
- 批准号:
10574490 - 财政年份:2022
- 资助金额:
$ 394.43万 - 项目类别: