INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
基本信息
- 批准号:10513159
- 负责人:
- 金额:$ 3.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:ART proteinAffectAmericanAnimalsAwardAxonBody WeightBody Weight decreasedBrainBrain regionCalciumCaloriesCell NucleusCommunicationCuesDataDetectionDevelopmentEatingFiberFoodGastrointestinal tract structureGrantHeterogeneityHungerHypothalamic structureImageImaging TechniquesIndividualInfusion proceduresIntakeKnowledgeMacronutrients NutritionMeasuresMediatingMentorsMentorshipMonitorMusNeuronsNeurosciencesNutrientObesityPeripheralPhasePhotometryPopulationPositioning AttributePublic HealthPublishingRegulationResearchResearch PersonnelRoleSatiationSensorySignal TransductionSmell PerceptionStomachStructureSynapsesTechnical ExpertiseTechniquesTechnologyTestingTimeTrainingUnited StatesVagus nerve structureVisionWeight GainWorkawakebasecareercareer developmentcell typecomorbiditydesigndetection of nutrientenergy balanceexperienceexperimental studyfeedingfood consumptiongastrointestinalgut-brain axishindbrainin vivoin vivo calcium imagingintegration sitemicroendoscopynovelobesity treatmentpost-doctoral trainingprogramsrelating to nervous systemresponsetwo photon microscopyweight loss intervention
项目摘要
PROJECT SUMMARY
The recent increase in obesity is a major public health concern. Since energy balance regulation is coordinated
by communication between the gastrointestinal (GI) tract and the brain, understanding these gut-brain
interactions will enable the development of novel obesity treatments. The hypothalamus and the hindbrain are
critical brain regions that integrate information from the gut to control food intake. Here, I will leverage recent
technological advances to explore the regulation of both these brain regions in awake, behaving animals.
Within the hypothalamus, agouti-related protein (AgRP)-expressing neurons are essential for food intake
control. Activity in AgRP neurons is high during hunger and is rapidly inhibited by food. My recent work
demonstrates that AgRP neurons are primarily regulated by calorie intake, rather than sensory detection of
food, since direct gastric infusion of macronutrients into the stomach rapidly suppresses AgRP neuron activity
in vivo. Further, this effect is recapitulated by administration of GI satiation signals normally released following
food consumption. However, the mechanisms through which the gut transmits signals to AgRP neurons remain
unknown. The mentored phase (Aims I and II) of this grant will build upon my previous work by elucidating the
mechanisms through which nutrient detection in the gut leads to AgRP neuron activity reductions. Specifically,
these aims will determine whether GI signals are transmitted vagally or through direct action on the brain, and
will uncover the AgRP axon projections that transmit nutritive signals throughout the brain. Importantly, the
mentored experiments will afford me training in peripheral manipulation of the GI tract, as well as in vivo
calcium imaging of individual neurons using microendoscopy and 2-photon microscopy, expanding my
technical expertise and enabling the proposed R00 experiments. The hindbrain nucleus tractus solitarius (NTS)
is the first central site of integration of GI-derived signals from vagal afferents, and is a key signaling node that
transmits signals from the gut to higher-order brain structures such as the hypothalamus. For the independent
phase (Aims III and IV) of my grant, I have designed experiments that build upon both my graduate and
postdoctoral training to determine how different hindbrain NTS neuron populations receive signals from the GI
tract, at unprecedented levels of temporal and cellular detail. These complementary research aims combined
with the proposed career development activities will provide me with the training necessary to successfully
transition to independence, under the guidance of my mentorship team who have extensive collective
experience with neuroscience techniques and mentorship. Overall, this award will facilitate my career as an
independent investigator characterizing the role of gut-brain signaling on the in vivo activity dynamics of
feeding-relevant neurons.
项目概要
最近肥胖人数的增加是一个主要的公共卫生问题。由于能量平衡调节是协调的
通过胃肠道 (GI) 和大脑之间的沟通,了解这些肠脑
相互作用将有助于开发新型肥胖疗法。下丘脑和后脑是
整合来自肠道的信息以控制食物摄入的关键大脑区域。在这里,我将利用最近
探索清醒、行为动物这两个大脑区域的调节的技术进步。
在下丘脑内,表达刺鼠相关蛋白 (AgRP) 的神经元对于食物摄入至关重要
控制。 AgRP 神经元的活性在饥饿期间很高,并且会被食物迅速抑制。我最近的工作
表明 AgRP 神经元主要受卡路里摄入的调节,而不是感觉检测
食物,因为直接向胃中注入常量营养素会迅速抑制 AgRP 神经元活性
体内。此外,通过施用通常在以下时间释放的胃肠道饱足信号来重现这种效果:
食品消费。然而,肠道向 AgRP 神经元传递信号的机制仍然存在
未知。这笔赠款的指导阶段(目标 I 和 II)将建立在我之前的工作基础上,阐明
肠道中营养物质检测导致 AgRP 神经元活性降低的机制。具体来说,
这些目标将决定胃肠道信号是通过迷走神经传递还是通过直接作用于大脑来传递,以及
将揭示在整个大脑中传递营养信号的 AgRP 轴突投射。重要的是,
指导实验将为我提供胃肠道外周操作以及体内操作的培训
使用显微内窥镜和双光子显微镜对单个神经元进行钙成像,扩大了我的研究范围
技术专业知识并支持拟议的 R00 实验。后脑孤束核 (NTS)
是整合来自迷走神经传入的胃肠道信号的第一个中心位点,并且是一个关键的信号传导节点
将信号从肠道传输到下丘脑等高级大脑结构。对于独立人士
在我的资助的阶段(目标 III 和 IV),我设计了基于我的研究生和
博士后培训以确定不同的后脑 NTS 神经元群体如何接收来自胃肠道的信号
道,以前所未有的时间和细胞细节水平。这些互补的研究目标结合在一起
拟议的职业发展活动将为我提供成功所需的培训
在我的导师团队的指导下过渡到独立,他们拥有广泛的集体经验
具有神经科学技术和指导的经验。总的来说,这个奖项将促进我作为一名
独立研究者描述肠脑信号传导对体内活动动态的作用
喂养相关神经元。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hypothalamic detection of macronutrients via multiple gut-brain pathways.
- DOI:10.1016/j.cmet.2020.12.018
- 发表时间:2021-03-02
- 期刊:
- 影响因子:29
- 作者:Goldstein N;McKnight AD;Carty JRE;Arnold M;Betley JN;Alhadeff AL
- 通讯作者:Alhadeff AL
Monitoring In Vivo Neural Activity to Understand Gut-Brain Signaling.
- DOI:10.1210/endocr/bqab029
- 发表时间:2021-05-01
- 期刊:
- 影响因子:4.8
- 作者:Alhadeff AL
- 通讯作者:Alhadeff AL
Growth differentiation factor 15 (GDF15) and semaglutide inhibit food intake and body weight through largely distinct, additive mechanisms.
- DOI:10.1111/dom.14663
- 发表时间:2022-06
- 期刊:
- 影响因子:5.8
- 作者:Ghidewon, M.;Wald, H. S.;McKnight, A. D.;De Jonghe, B. C.;Breen, D. M.;Alhadeff, A. L.;Borner, T.;Grill, H. J.
- 通讯作者:Grill, H. J.
Inhibition of Itch by Hunger and AgRP Neuron Activity.
- DOI:10.1016/j.neuroscience.2020.06.005
- 发表时间:2020-12-01
- 期刊:
- 影响因子:3.3
- 作者:Alhadeff AL;Park O;Hernandez E;Betley JN
- 通讯作者:Betley JN
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amber L Alhadeff其他文献
Amber L Alhadeff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amber L Alhadeff', 18)}}的其他基金
Unraveling the homeostatic and hedonic circuits underlying feeding behavior and obesity
揭示进食行为和肥胖背后的稳态和享乐回路
- 批准号:
10491171 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Unraveling the homeostatic and hedonic circuits underlying feeding behavior and obesity
揭示进食行为和肥胖背后的稳态和享乐回路
- 批准号:
10662504 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Leica STELLARIS 5 Confocal Microscope
Leica STELLARIS 5 共焦显微镜
- 批准号:
10177189 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Harnessing sensory food circuits to influence feeding behavior
利用感官食物回路影响进食行为
- 批准号:
10245940 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Unraveling the homeostatic and hedonic circuits underlying feeding behavior and obesity
揭示进食行为和肥胖背后的稳态和享乐回路
- 批准号:
10346410 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10064373 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10396872 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10321583 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10092151 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Trans-omic analysis of epicardial adipose tissue in atrial fibrillation
心房颤动心外膜脂肪组织的跨组学分析
- 批准号:
10330560 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Trans-omic analysis of epicardial adipose tissue in atrial fibrillation
心房颤动心外膜脂肪组织的跨组学分析
- 批准号:
10096986 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10064373 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10396872 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
INVESTIGATING THE GUT-BRAIN SIGNALING DYNAMICS REGULATING FOOD INTAKE
研究调节食物摄入的肠脑信号动力学
- 批准号:
10321583 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别: