Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
基本信息
- 批准号:10514527
- 负责人:
- 金额:$ 1.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2023-03-01
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D Print4 year oldAdolescentAdultAerosol Drug TherapyAerosolsAffectAirAir MovementsAirway DiseaseAlpha ParticlesAreaAutomationBreathingCellsChildChildhoodClinicalCoculture TechniquesCollectionComplementComplexComputer ModelsCustomDangerousnessDataDepositionDevelopmentDevicesDiseaseDoseDrug Delivery SystemsDrug TransportEatingEngineeringEnsureEnvironmentEpithelial CellsEyeEye InfectionsEyedropsFluorescenceGenerationsGeometryGrowthHuman PapillomavirusHydrogelsImageIn VitroIncidenceIndividualInhalationInhalation TherapyInhalatorsLarynxLeftLegLibrariesLiquid substanceLocationLungMagnetic Resonance ImagingMalignant NeoplasmsMeasuresMechanicsMedicineModelingMotionMovementMucous body substanceObstructionOperative Surgical ProceduresOral cavityOtolaryngologistPapillomaParticle SizePatientsPatternPediatric Surgical ProceduresPharmaceutical PreparationsPharyngeal structurePhysiologicalPhysiologyPositioning AttributePostoperative PeriodPre-Clinical ModelProbabilityProceduresRare DiseasesRecurrent respiratory papillomatosisRepeat SurgerySpeechStructureTechniquesTestingTherapeuticThickTissuesTopical applicationValidationWorkX-Ray Computed Tomographyairway obstructioncareercostdesigndosagedrug response predictionengineering designexperienceflexibilityglottisin silicoin vitro Modelmimicrymodel developmentmultidisciplinarynext generationnovelparticlepediatric patientspersonalized therapeuticphysical modelpre-clinicalpredictive toolspreventresponsesexsimulationstandard caretooltrend
项目摘要
PROJECT ABSTRACT
Juvenile Onset Recurrent Respiratory Papillomatosis (JORRP) is a rare disease in children that causes
papillomatous legions on the glottis (voice box) leading to significant airway obstructions and difficulties with
eating, speech, and breathing. The current treatment is surgery and, to minimize surgical damage, diseased
cells are usually left behind in surgery and regrow. This leads to a vicious cycle of regrowth and repeated surgical
intervention, with some children requiring as many as 12 surgeries each year. In an analogous HPV eye infection,
ocular conjunctival papilloma legions are managed with eye drop delivery; however, there are currently no
equivalent options for direct topical therapeutic delivery to the glottis. Unfortunately, pediatric preclinical drug
delivery models are notably absent in the field, including those that might enable development of customized
pediatric inhalation therapies. There is a significant remaining challenge to develop high-throughput, integrated
preclinical models that accurately predict drug transport within the unique physiology of pediatric patients,
especially in regions of high mobility such as the glottis. The overall objective of this work is to engineer a
first-in-kind experimental pediatric “breathing pharyngeal” model, allowing us to directly establish
spatial drug deposition profiles in pediatric-specific airways under realistic breathing conditions. This
design-driven objective will require integration of pediatric imaging, automation, and tissue-mimicry, combining
discrete engineering design approaches to create critical experimentally capacity for drug transport studies under
accurate physiological movement. In Aim 1, we will develop analogous in silico and in vitro dynamic glottis
models. We will employ novel computational fluid particle dynamics (CFPD) modeling techniques capturing
glottis motion. We will vary patient geometry, air flow rates, and particle sizes, creating a library of aerosol
deposition profiles and trends. These simulations will complement and inform the in vitro model development;
we will integrate technological engineering designs with patient airway replicas utilizing motorized, flexible glottis
sections in line with a particle collection impactor to quantify particle deposition. In Aim 2, we will increase particle
delivery to the glottis by leveraging CFPD modeling to identify promising parameters with the greatest probability
of successful targeting and subsequently replicate and interrogate the simulations in vitro. We will incorporate
cellularized hydrogels into the model to ensure disease development and physiological environments are
accurately represented, varying thickness and including a complex cellular co-culture will ensure accurate
mimicry of physiological and disease development. This project will result in the generation of 1) novel dynamic
pediatric glottis computational models, 2) a preclinical tool to establish pediatric aerosol delivery, and 3) evidence
of customizable inhalable therapies to treat obstructive pediatric airway diseases.
项目摘要
青少年发病的复发性呼吸道乳头状瘤病 (JORRP) 是一种罕见的儿童疾病,可导致
声门(声门)上的乳头状瘤群导致严重的气道阻塞和呼吸困难
目前的治疗方法是手术,以尽量减少手术损伤。
细胞通常会在手术中留下并重新生长,这会导致再生和重复手术的恶性循环。
对于类似的 HPV 眼部感染,一些儿童每年需要进行多达 12 次手术。
眼结膜乳头状瘤可以通过滴眼液来治疗,但目前还没有这种方法。
不幸的是,儿科临床前药物的直接局部治疗递送的等效选择。
该领域明显缺乏交付模式,包括那些可能支持定制开发的交付模式
儿科吸入疗法的开发仍面临重大挑战。
临床前模型可以准确预测儿科患者独特生理学内的药物转运,
尤其是在声门等高活动性区域。这项工作的总体目标是设计一个
首个实验性儿科“呼吸咽”模型,使我们能够直接建立
在真实呼吸条件下儿科特定气道的空间药物沉积曲线。
设计驱动的目标需要整合儿科成像、自动化和组织模拟,结合
离散工程设计方法为药物转运研究创造关键的实验能力
在目标 1 中,我们将在计算机和体外开发类似的动态声门。
我们将采用新颖的计算流体粒子动力学(CFPD)建模技术来捕获。
我们将改变患者的几何形状、气流速率和颗粒大小,创建气溶胶库。
这些模拟将补充并指导体外模型的开发;
我们将利用机动化、灵活的声门将技术工程设计与患者气道复制品相结合
与颗粒收集冲击器一致的部分以量化颗粒沉积 在目标 2 中,我们将增加颗粒。
利用 CFPD 建模以最大概率识别有希望的参数,将药物输送到声门
成功靶向并随后在体外复制和询问模拟。
将细胞化水凝胶放入模型中,以确保疾病发展和生理环境
准确地表示,不同的厚度和包括复杂的细胞共培养将确保准确
该项目将产生 1) 新颖的动态。
儿科声门计算模型,2) 建立儿科气雾剂输送的临床前工具,以及 3) 证据
用于治疗阻塞性儿科气道疾病的可定制吸入疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Emily Kolewe其他文献
Emily Kolewe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Emily Kolewe', 18)}}的其他基金
Dynamic, Cellularized, 3D Printed Model Development for Aerosol Targeting in Pediatric JORRP Patients
用于儿科 JORRP 患者气溶胶靶向的动态、细胞化、3D 打印模型开发
- 批准号:
10317899 - 财政年份:2021
- 资助金额:
$ 1.43万 - 项目类别:
相似国自然基金
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
- 批准号:22309176
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
自由曲面空间网格结构3D打印节点力学性能与智能优化研究
- 批准号:52378167
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
- 批准号:32301209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
- 批准号:22378202
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
3D打印支架联合纳米药物复合糖肽水凝胶治疗关节炎
- 批准号:82302702
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Individual cell bioprinting to generate multi-tissue type condensations for osteochondral tissue regeneration
单个细胞生物打印可生成用于骨软骨组织再生的多组织类型浓缩物
- 批准号:
10659772 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Soft robotic sensor arrays for fast and efficient mapping of cardiac arrhythmias.
软机器人传感器阵列可快速有效地绘制心律失常图。
- 批准号:
10760164 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Genetics and neurobiology of aggression of Betta splendens
芨芨草攻击行为的遗传学和神经生物学
- 批准号:
10731186 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Low-Dose Magneto-Thrombolysis to Expand Stroke Care
低剂量磁溶栓扩大中风治疗范围
- 批准号:
10693650 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别:
Ultrafast sintering of dental zirconia: composition-processing-property relationships with high-throughput fail-fast screening
牙科氧化锆的超快烧结:成分-加工-性能关系与高通量快速失败筛选
- 批准号:
10792738 - 财政年份:2023
- 资助金额:
$ 1.43万 - 项目类别: