Engineering CAR-B cells for an HIV-1 functional cure
改造 CAR-B 细胞以实现 HIV-1 功能性治愈
基本信息
- 批准号:10514882
- 负责人:
- 金额:$ 69.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnatomyAnimalsAntibodiesAntigensAutoantigensB cell repertoireB-Cell Antigen ReceptorB-Cell DevelopmentB-LymphocytesBiological AvailabilityBlood - brain barrier anatomyBrainCatabolismCellsCerebrospinal FluidClinicalClustered Regularly Interspaced Short Palindromic RepeatsDevelopmentEffector CellEndothelial CellsEngineeringEngraftmentEpitopesEvolutionExcisionFaceFc ReceptorFc domainGene Transduction AgentGenesHIVHIV InfectionsHIV-1Half-LifeIgG1ImmuneImmune SeraImmune systemImmunizationImmunoglobulin GImmunoglobulin Somatic HypermutationImmunologicsIndividualInfectionInfection ControlInfusion proceduresInjectionsInterruptionInterventionLeftLightLymphoid TissueMacacaMacaca fascicularisMacaca mulattaMethodsModificationMonitorMusMutationOrthologous GenePharmaceutical PreparationsPharmacologyPhenotypePopulationPrimatesProliferatingProteinsProtocols documentationProvirusesReplacement TherapyRouteSelf AdministrationSeriesSiteStructureSystemT cell responseTFRC geneTechniquesTechnologyTestingTimeVaccinatedVaccinationVariantViralViremiaVirusWorkantibody transferantiretroviral therapyarmcerebrovascularchimeric antigen receptorcostdelivery vehicledesignfitnessimmunogenicimmunogenicityimprovedin vivoindividual responseinhibiting antibodyneutralizing antibodypathogenrepairedresponseside effectsimian human immunodeficiency virussmall moleculesocial stigmatranscytosisuptake
项目摘要
SUMMARY
Long-term expression of broadly neutralizing antibodies (bNAbs) has the potential to suppress an established
HIV-1 infection. However, current methods for maintaining high bNAb concentrations necessary for this control
are inadequate. Passive infusion of bNAbs is prohibitively expensive and requires HIV-1 positive individuals to
receive infusions on a weekly or monthly basis. Delivery of bNAbs by gene-therapy vectors almost invariably
raises anti-drug antibodies (ADA) against expressed bNAbs, which are immunogenic due to their extensive
hypermutation. Most importantly, no single set of antibodies can adequately suppress the range of viruses in the
population, in large part because current antibody delivery systems fail to do what an immune system does well:
adapt to a diverse and evolving pathogen. Here we describe a series of technical advances that allow us to
introduce bNAb heavy- and light-chain genes into their native loci in primary B cells. These technologies enable
in vivo improvement of bNAbs through affinity maturation in mice and primates, using the acquired wisdom of
the humoral response to rapidly increase antibody potency, breadth, and bioavailability. They also allow us to
test the core hypothesis of this proposal that B-cell delivered bNAbs can permanently suppress an established
infection in the absence of anti-retroviral therapy (ART).
The chief technical advance that enables these studies is the development of an efficient double-editing
technique for simultaneously replacing the variable heavy and light chain segments of B cell receptors. This is
made possible through use of a newly characterized Cas12a ortholog and a unique homology-directed repair
template design capable of efficiently replacing nearly any endogenous BCR variable region. The net
consequence is that, unlike related B-cell editing approaches, the full regulatory apparatus of the B cell is left
intact, facilitating robust B-cell development and efficient affinity maturation of the B-cell receptor.
The project is divided into three aims. Aim 1 will increase the breadth and potency of three well characterized
bNAbs through affinity maturation in vivo. Aim 2 will extend CRISPR editing to the Fc domain, introducing a
recently described set of mutations into the IgG1 Fc domain that facilitate antibody transfer across the blood-
brain barrier. Finally, Aim 3 tests the ability of primary B cells expressing the bNAbs improved in Aim 1 to control
a SHIV infection in rhesus macaques. A series of structured treatment interrupts will be performed to drive CAR
B proliferation and generate an individualized response to virus that emerges from the reservoir. After these
structured interruptions, ART will be permanently withdrawn to determine if CAR B cells alone can control an
established infection.
概括
广泛中和抗体(bNAb)的长期表达有可能抑制已建立的
HIV-1 感染。然而,目前维持这种控制所需的高 bNAb 浓度的方法
是不够的。 bNAb 的被动输注非常昂贵,并且需要 HIV-1 阳性个体
每周或每月接受输液。几乎总是通过基因治疗载体递送 bNAb
产生针对表达的 bNAb 的抗药物抗体 (ADA),这些抗体由于其广泛的作用而具有免疫原性
超突变。最重要的是,没有一组抗体能够充分抑制体内的病毒范围。
人口,很大程度上是因为当前的抗体输送系统无法完成免疫系统擅长的工作:
适应多样化且不断进化的病原体。在这里,我们描述了一系列技术进步,使我们能够
将 bNAb 重链和轻链基因引入原代 B 细胞中的天然基因座。这些技术使
利用小鼠和灵长类动物的亲和力成熟,体内改进 bNAb
快速增加抗体效力、广度和生物利用度的体液反应。它们还让我们能够
测试该提案的核心假设,即 B 细胞递送的 bNAb 可以永久抑制已建立的
在没有抗逆转录病毒治疗(ART)的情况下感染。
实现这些研究的主要技术进步是高效双重编辑的开发
同时替换 B 细胞受体的可变重链和轻链片段的技术。这是
通过使用新表征的 Cas12a 直向同源物和独特的同源定向修复使之成为可能
模板设计能够有效替换几乎任何内源性 BCR 可变区。网
结果是,与相关的 B 细胞编辑方法不同,B 细胞的完整调节装置被保留
完整,促进 B 细胞的稳健发育和 B 细胞受体的有效亲和力成熟。
该项目分为三个目标。目标 1 将增加三个明确特征的广度和效力
bNAb 通过体内亲和力成熟。目标 2 将 CRISPR 编辑扩展到 Fc 结构域,引入
最近描述了 IgG1 Fc 结构域的一组突变,这些突变促进抗体跨血液转移
脑屏障。最后,目标 3 测试了表达目标 1 中改进的 bNAb 的原代 B 细胞控制的能力
恒河猴感染 SHIV。将执行一系列结构化处理中断来驱动 CAR
B 增殖并对从储存库中出现的病毒产生个体化反应。在这些之后
结构性中断,ART 将永久撤回,以确定 CAR B 细胞是否可以单独控制
已确诊感染。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael R. Farzan其他文献
Michael R. Farzan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael R. Farzan', 18)}}的其他基金
eCD4-mediated control of SIV infection in the brain
eCD4 介导的脑部 SIV 感染控制
- 批准号:
10698442 - 财政年份:2023
- 资助金额:
$ 69.5万 - 项目类别:
Safe, CRISPR/Cas-free B cell editing for therapeutic applications
用于治疗应用的安全、无 CRISPR/Cas 的 B 细胞编辑
- 批准号:
10725412 - 财政年份:2023
- 资助金额:
$ 69.5万 - 项目类别:
Improving mRNA vaccines with extracellular vesicle-associated immunogens
使用细胞外囊泡相关免疫原改进 mRNA 疫苗
- 批准号:
10573644 - 财政年份:2022
- 资助金额:
$ 69.5万 - 项目类别:
Improving mRNA vaccines with extracellular vesicle-associated immunogens
使用细胞外囊泡相关免疫原改进 mRNA 疫苗
- 批准号:
10850617 - 财政年份:2022
- 资助金额:
$ 69.5万 - 项目类别:
Engineering CAR-B cells for an HIV-1 functional cure
改造 CAR-B 细胞以实现 HIV-1 功能性治愈
- 批准号:
10844837 - 财政年份:2022
- 资助金额:
$ 69.5万 - 项目类别:
Therapeutic Use of an Enhanced Form of CD4-Ig
增强形式的 CD4-Ig 的治疗用途
- 批准号:
9970576 - 财政年份:2020
- 资助金额:
$ 69.5万 - 项目类别:
Eliciting tyrosine-sulfated neutralizing antibodies recognizing the Env apex
引发识别 Env 顶点的酪氨酸硫酸化中和抗体
- 批准号:
10013483 - 财政年份:2020
- 资助金额:
$ 69.5万 - 项目类别:
Therapeutic use of an enhanced form of CD4-Ig
增强型 CD4-Ig 的治疗用途
- 批准号:
10851165 - 财政年份:2020
- 资助金额:
$ 69.5万 - 项目类别:
相似国自然基金
儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
- 批准号:82360892
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
- 批准号:82272582
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
eCD4-mediated control of SIV infection in the brain
eCD4 介导的脑部 SIV 感染控制
- 批准号:
10698442 - 财政年份:2023
- 资助金额:
$ 69.5万 - 项目类别:
Sigma 2 Receptor (TMEM97): Investigating the Peripheral Role of this Novel Therapeutic Target for Pain
Sigma 2 受体 (TMEM97):研究这种新型疼痛治疗靶点的外周作用
- 批准号:
10607436 - 财政年份:2023
- 资助金额:
$ 69.5万 - 项目类别:
Protease-activated-receptor-2 antagonists for treatment of migraine pain
蛋白酶激活受体 2 拮抗剂治疗偏头痛
- 批准号:
10602826 - 财政年份:2023
- 资助金额:
$ 69.5万 - 项目类别:
Vascular mechanisms of sepsis-induced cognitive dysfunction
脓毒症所致认知功能障碍的血管机制
- 批准号:
10681857 - 财政年份:2023
- 资助金额:
$ 69.5万 - 项目类别:
Targeted drug delivery system to overcome blood-brain barrier and therapeutic resistance to current standard of care in Glioblastoma
靶向药物输送系统可克服血脑屏障和对胶质母细胞瘤现行护理标准的治疗耐药性
- 批准号:
10659749 - 财政年份:2023
- 资助金额:
$ 69.5万 - 项目类别: